Structural Monitoring of Long-span Curved Reinforced Concrete Beam-Column Frame using Distributed Fibre Optical Sensor

Authors

  • Jun Xia Department of Civil Engineering, Design School, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
  • Rengeng Zheng Department of Civil Engineering, Design School, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China https://orcid.org/0009-0001-0081-6451
  • Xiaodong Chen Department of Civil Engineering, Design School, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China https://orcid.org/0009-0008-4138-852X
  • Lihua Tan ARTS Group Co., Ltd, No.111, Bada Street, Suzhou Industrial Park, Suzhou 215123, China

DOI:

https://doi.org/10.15377/2409-9821.2025.12.13

Keywords:

Lateral stiffness, Crack width estimation, Temperature adjustment, Double integration method

Abstract

The paper presents the process and results of the structural health monitoring of two long-span curved reinforced concrete frames using the distributed fibre optical sensor. Optical fibres were attached to the steel reinforcing bars to obtain temperature, strain, deformation, and cracking information for the beams and columns. The temperature measurements were used to adjust the strain readings, then obtain the stress, deformation, and crack width estimations. Five measurements along the history of construction were taken with the first data set as the baseline right after casting the beams. The remaining four are measurements at 14, 28, 89, and 288 days. The measurements revealed that both ends of the long-span beams only have limited lateral movement due to the high lateral stiffness of the columns. The maximum deflections of the two beams are estimated to be 29 mm and 45 mm, respectively, which satisfy the design requirements. The maximum crack widths of both beams are estimated to be much less than 0.3 mm. The presented work demonstrates the effectiveness of distributed fibre optical sensors in monitoring long-span reinforced concrete frames with limitations to be improved in the future implementations.

Downloads

Download data is not yet available.

References

[1] Zhou Q, Wan J, Xin J, Mao JQ, Zhou J. Non-uniform temperature fields and debonding of a long-span CFST arch bridge under coupled environmental actions. Case Stud Constr Mater. 2025; 23: e05109. https://doi.org/10.1016/j.cscm.2025.e05109 DOI: https://doi.org/10.1016/j.cscm.2025.e05109

[2] Huang L, Hu J, Zeng B, Zhou Z, Li L. Experimental and numerical investigation on the mechanism of large-span floor system characterized by biaxially prestressed steel reinforced concrete beams. Structures. 2024; 69: 107443. https://doi.org/10.1016/j.istruc.2024.107443 DOI: https://doi.org/10.1016/j.istruc.2024.107443

[3] Pan W, Turrin M, Louter C, Sariyildiz S, Sun Y. Integrating multi-functional space and long-span structure in the early design stage of indoor sports arenas using parametric modelling and multi-objective optimization. J Build Eng. 2019; 22: 464-85. https://doi.org/10.1016/j.jobe.2019.01.006 DOI: https://doi.org/10.1016/j.jobe.2019.01.006

[4] Xu D, Xu X, Forde MC, Caballero A. Concrete and steel bridge structural health monitoring: Insight into choices for machine learning applications. Constr Build Mater. 2023; 402: 132596. https://doi.org/10.1016/j.conbuildmat.2023.132596 DOI: https://doi.org/10.1016/j.conbuildmat.2023.132596

[5] Feng DC, Ding JY, Xie SC, Li Y, Akiyama M, Lu Y, et al. Climate change impacts on the risk assessment of concrete civil infrastructures. ASCE Open Multidiscip J Civ Eng. 2024; 2(1): 03124001. https://doi.org/10.1061/AOMJAH.AOENG-0026 DOI: https://doi.org/10.1061/AOMJAH.AOENG-0026

[6] Abu-Khasan M, Egorov V, Moskalev M, Perminova T. The use of serial structures for large-span frames. In: IOP Conf Ser Earth Environ Sci. 2022; 988: 052014. https://doi.org/10.1088/1755-1315/988/5/052014 DOI: https://doi.org/10.1088/1755-1315/988/5/052014

[7] Han X, Frangopol DM. Life-cycle risk-based optimal maintenance strategy for bridge networks subjected to corrosion and seismic hazards. J Bridge Eng. 2023; 28(1): 1-12. https://doi.org/10.1061/JBENF2.BEENG-579 DOI: https://doi.org/10.1061/JBENF2.BEENG-5799

[8] Ji Y, Xu W, Sun Y, Ma Y, He Q, Xing Z. Grey correlation analysis of the durability of steel fiber-reinforced concrete under environmental action. Materials. 2022; 15(14): 4748. https://doi.org/10.3390/ma15144748 DOI: https://doi.org/10.3390/ma15144748

[9] Sanchez-Silva M, Klutke GA, Rosowsky DV. Life-cycle performance of structures subject to multiple deterioration mechanisms. Struct Saf. 2011; 33(3): 206-17. https://doi.org/10.1016/j.strusafe.2011.03.003 DOI: https://doi.org/10.1016/j.strusafe.2011.03.003

[10] Tian F, Li G, Zhang C. Long-term mechanical performance analysis of concrete bridges in atmospheric environment. J Tongji Univ. 2015; 43(4): 483-9. https://doi.org/10.11908/j.issn.0253-374x.2015.04.001

[11] Feng H, Ma W, Wen H. Research on risk assessment of large-span steel structure project construction phase based on variable weight two-dimensional cloud model. In: Proc SPIE Int Soc Opt Eng. 2022. https://doi.org/10.1117/12.2658181 DOI: https://doi.org/10.1117/12.2658181

[12] Hakimi O, Liu H, Abudayyeh O. Deep learning-driven multi-level data fusion framework for predictive maintenance and structural health monitoring of concrete bridge decks. Autom Constr. 2025; 175: 106180. https://doi.org/10.1016/j.autcon.2025.106180 DOI: https://doi.org/10.1016/j.autcon.2025.106180

[13] Li HN, Ren L, Jia ZG, Yi TH, Li DS. State-of-the-art in structural health monitoring of large and complex civil infrastructures. J Civ Struct Health Monit. 2016; 6(1): 3-16. https://doi.org/10.1007/s13349-015-0108-9 DOI: https://doi.org/10.1007/s13349-015-0108-9

[14] Krätzig WB, Petryna YS. Structural damage and lifetime estimates by nonlinear FE simulation. Eng Struct. 2005; 27(12): 1726-40. https://doi.org/10.1016/j.engstruct.2005.04.015 DOI: https://doi.org/10.1016/j.engstruct.2005.04.015

[15] Yu X, Fu Y, Li J, Mao J, Hoang T, Wang H. Recent advances in wireless sensor networks for structural health monitoring of civil infrastructure. J Infrastruct Intell Resil. 2024; 3(1): 100066. https://doi.org/10.1016/j.iintel.2023.100066 DOI: https://doi.org/10.1016/j.iintel.2023.100066

[16] Khandel O, Soliman M, Floyd RW, Murray CD. Performance assessment of prestressed concrete bridge girders using fiber optic sensors and artificial neural networks. Struct Infrastruct Eng. 2021; 17(5): 605-19. https://doi.org/10.1080/15732479.2020.1759658 DOI: https://doi.org/10.1080/15732479.2020.1759658

[17] Bao Y, Chen Z, Wei S, Xu Y, Tang Z, Li H. The state of the art of data science and engineering in structural health monitoring. Engineering. 2019; 5(2): 234-42. https://doi.org/10.1016/j.eng.2018.11.027 DOI: https://doi.org/10.1016/j.eng.2018.11.027

[18] Beskhyroun S, Hosseini SEA. A novel methodology for structural health monitoring of buildings subjected to earthquakes. Eng Struct. 2025; 343: 120974. https://doi.org/10.1016/j.engstruct.2025.120974 DOI: https://doi.org/10.1016/j.engstruct.2025.120974

[19] Farrar CR, Worden K. An introduction to structural health monitoring. Philos Trans R Soc A. 2007; 365(1851): 303-15. https://doi.org/10.1098/rsta.2006.1928 DOI: https://doi.org/10.1098/rsta.2006.1928

[20] Isac MD, Cîmpean C, Manea DL. The current status of structural monitoring: A bibliometric literature review. Buildings. 2025; 15(5): 739. https://doi.org/10.3390/buildings15050739 DOI: https://doi.org/10.3390/buildings15050739

[21] He Z, Li W, Salehi H, Zhang H, Zhou H, Jiao P. Integrated structural health monitoring in bridge engineering. Autom Constr. 2022; 136: 104168. https://doi.org/10.1016/j.autcon.2022.104168 DOI: https://doi.org/10.1016/j.autcon.2022.104168

[22] Weil M, Weijtjens W, Devriendt C. Data-driven temperature compensation of strain measurements using particle filters: Sensitivity study and application for event-driven structural health monitoring of a bio-composite pedestrian bridge. Mech Syst Signal Process. 2025; 241: 113316. https://doi.org/10.1016/j.ymssp.2025.113316 DOI: https://doi.org/10.1016/j.ymssp.2025.113316

[23] Zhang X, Zhu H, Jiang X, Broere W. Distributed fiber optic sensors for tunnel monitoring: A state-of-the-art review. J Rock Mech Geotech Eng. 2024; 16(9): 3841-63. https://doi.org/10.1016/j.jrmge.2024.01.008 DOI: https://doi.org/10.1016/j.jrmge.2024.01.008

[24] Chen W, Tan XY, Yang J. Review of state-of-the-art in structural health monitoring of tunnel engineering. Smart Undergr Eng. 2025; 1(1): 40-50. https://doi.org/10.1016/j.sue.2025.05.004 DOI: https://doi.org/10.1016/j.sue.2025.05.004

[25] Wijaya H, Rajeev P, Gad E. Distributed optical fibre sensor for infrastructure monitoring: Field applications. Opt Fiber Technol. 2021; 64: 102577. https://doi.org/10.1016/j.yofte.2021.102577 DOI: https://doi.org/10.1016/j.yofte.2021.102577

[26] Hou H, Yang Y, Wu J, Zhang Q. Multi-sensor data anomaly detection for super high-rise buildings based on EfficientNet modeling. J Build Eng. 2025; 108: 112906. https://doi.org/10.1016/j.jobe.2025.112906 DOI: https://doi.org/10.1016/j.jobe.2025.112906

[27] Nagarajaiah S, Erazo K. Structural monitoring and identification of civil infrastructure in the United States. Struct Monit Maint. 2016; 3(1): 51-69. https://doi.org/10.12989/smm.2016.3.1.051 DOI: https://doi.org/10.12989/smm.2016.3.1.051

[28] Fujino Y, Siringoringo DM, Ikeda Y, Nagayama T, Mizutani T. Research and implementations of structural monitoring for bridges and buildings in Japan. Engineering. 2019; 5(6): 1093-119. https://doi.org/10.1016/j.eng.2019.09.006 DOI: https://doi.org/10.1016/j.eng.2019.09.006

[29] Wen W, Zhang C, Zhai C, Guo J, Hu J. A method for automatic monitoring structural earthquake response using surveillance video. J Build Eng. 2025; 112: 113737. https://doi.org/10.1016/j.jobe.2025.113737 DOI: https://doi.org/10.1016/j.jobe.2025.113737

[30] Plevris V, Papazafeiropoulos G. AI in structural health monitoring for infrastructure maintenance and safety. Infrastructures. 2024; 9(12): 225. https://doi.org/10.3390/infrastructures9120225 DOI: https://doi.org/10.3390/infrastructures9120225

[31] Soleymani A, Jahangir H, Nehdi ML. Damage detection and monitoring in heritage masonry structures: Systematic review. Constr Build Mater. 2023; 397: 132402. https://doi.org/10.1016/j.conbuildmat.2023.132402 DOI: https://doi.org/10.1016/j.conbuildmat.2023.132402

[32] Li H, Ou J, Zhao X, Zhou W, Li H, Zhou Z, et al. Structural health monitoring system for the Shandong Binzhou Yellow River Highway Bridge. Comput Aided Civ Infrastruct Eng. 2006; 21(4): 306-17. https://doi.org/10.1111/j.1467-8667.2006.00437.x DOI: https://doi.org/10.1111/j.1467-8667.2006.00437.x

[33] AlHamaydeh M, Aswad NG. Structural health monitoring techniques and technologies for large-scale structures: Challenges, limitations, and recommendations. Pract Period Struct Des Constr. 2022; 27(3): 03122004. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000703 DOI: https://doi.org/10.1061/(ASCE)SC.1943-5576.0000703

[34] Xie S, Liu Y, Ansari F, Bao Y. Distributed fiber optic sensors for monitoring cracks in civil infrastructure. Autom Constr. 2026; 182: 106717. https://doi.org/10.1016/j.autcon.2025.106717 DOI: https://doi.org/10.1016/j.autcon.2025.106717

[35] Bado MF, Casas JR. A review of recent distributed optical fiber sensors applications for civil engineering structural health monitoring. Sensors. 2021; 21: 1818. https://doi.org/10.3390/s21051818 DOI: https://doi.org/10.3390/s21051818

[36] Lu P, Lalam N, Badar M, Liu B, Chorpening BT, Buric MP, et al. Distributed optical fiber sensing: Review and perspective. Appl Phys Rev. 2019; 6(4): 041302. https://doi.org/10.1063/1.5113955 DOI: https://doi.org/10.1063/1.5113955

[37] Ghazali MF, Mohamad H, Mohd Nasir MY, Hamzh A, Abdullah MA, Abd Aziz NF, et al. State-of-the-art application and challenges of optical fibre distributed acoustic sensing in civil engineering. Opt Fiber Technol. 2024; 87: 103911. https://doi.org/10.1016/j.yofte.2024.103911 DOI: https://doi.org/10.1016/j.yofte.2024.103911

[38] Palmieri L, Schenato L, Santagiustina M, Galtarossa A. Rayleigh-based distributed optical fiber sensing. Sensors. 2022; 22(18): 6811. https://doi.org/10.3390/s22186811 DOI: https://doi.org/10.3390/s22186811

[39] Bai Q, Wang Q, Wang D, Wang Y, Gao Y, Zhang H. Recent advances in Brillouin optical time domain reflectometry. Sensors. 2019; 19(8): 1862. https://doi.org/10.3390/s19081862 DOI: https://doi.org/10.3390/s19081862

[40] Li J, Zhang M. Physics and applications of Raman distributed optical fiber sensing. Light Sci Appl. 2022; 11(1): 128. https://doi.org/10.1038/s41377-022-00811-x DOI: https://doi.org/10.1038/s41377-022-00811-x

[41] Ding Z, Wang C, Liu K, Jiang J, Yang D, Pan G, et al. Distributed optical fiber sensors based on optical frequency domain reflectometry: A review. Sensors. 2018; 18(4): 1072. https://doi.org/10.3390/s18041072 DOI: https://doi.org/10.3390/s18041072

[42] Zhang L, Nie J, Shi B, Han H, Wu J, Cui Y. Calculation of the opening of neighboring surface cracks in concrete structures based on OFDR technology. Constr Build Mater. 2023; 376: 131073. https://doi.org/10.1016/j.conbuildmat.2023.131073 DOI: https://doi.org/10.1016/j.conbuildmat.2023.131073

[43] Ren Y, Song H, Cai Q. Tensile modulus measurement of composite materials based on distributed optical fiber strain monitoring technology. Measurement. 2024; 238: 115267. https://doi.org/10.1016/j.measurement.2024.115267 DOI: https://doi.org/10.1016/j.measurement.2024.115267

[44] Moser D, Martin-Candilejo A, Cueto-Felgueroso L, Santillán D. Use of fiber-optic sensors to monitor concrete dams: Recent breakthroughs and new opportunities. Struct. 2024; 67: 106968. https://doi.org/10.1016/j.istruc.2024.106968 DOI: https://doi.org/10.1016/j.istruc.2024.106968

[45] Acharya A, Kogure T. Advances in fibre-optic-based slope reinforcement monitoring: A review. J Rock Mech Geotech Eng. 2025; 17(2): 1263-84. https://doi.org/10.1016/j.jrmge.2024.03.022 DOI: https://doi.org/10.1016/j.jrmge.2024.03.022

[46] Zhao J, Ma T, Zhang F. Distributed optical fiber sensors for pavement engineering: A state-of-the-art review. Measurement. 2025; 246: 116732. https://doi.org/10.1016/j.measurement.2025.116732 DOI: https://doi.org/10.1016/j.measurement.2025.116732

[47] Tan X, Abu-Obeidah A, Bao Y, Nassif H, Nasreddine W. Measurement and visualization of strains and cracks in CFRP post-tensioned fiber reinforced concrete beams using distributed fiber optic sensors. Autom Constr. 2021; 124: 103604. https://doi.org/10.1016/j.autcon.2021.103604 DOI: https://doi.org/10.1016/j.autcon.2021.103604

[48] Tan X, Du J, Zhang Q, Meng W, Bao Y. Monitoring restrained shrinkage and cracks of ultra-high-performance concrete using distributed fiber optic sensors. Constr Build Mater. 2024; 422: 135789. https://doi.org/10.1016/j.conbuildmat.2024.135789 DOI: https://doi.org/10.1016/j.conbuildmat.2024.135789

[49] Wu J, Liu H, Yang P, Tang B, Wei G. Quantitative strain measurement and crack opening estimate in concrete structures based on OFDR technology. Opt Fiber Technol. 2020; 60: 102354. https://doi.org/10.1016/j.yofte.2020.102354 DOI: https://doi.org/10.1016/j.yofte.2020.102354

[50] Liu H, Zhang S, Coulibaly AAS, Cheng J, DeJong MJ. Monitoring reinforced concrete cracking behavior under uniaxial tension using distributed fiber-optic sensing technology. J Struct Eng. 2021; 147(12): 04023001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003191 DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0003191

[51] Zhang S, Liu H, Coulibaly AAS, DeJong M. Fiber optic sensing of concrete cracking and rebar deformation using several types of cable. Struct Control Health Monit. 2021; 28(2): 1-23. https://doi.org/10.1002/stc.2664 DOI: https://doi.org/10.1002/stc.2664

[52] Ning H, Guizhen M, Bin H. Experimental study of sheet pile wharf based on distributed optical fiber monitoring technology. Hydro-Sci Eng. 2021; (4): 85-91. https://doi.org/10.12170/20201106002

Downloads

Published

2025-12-10

Issue

Section

Articles

Categories

How to Cite

1.
Structural Monitoring of Long-span Curved Reinforced Concrete Beam-Column Frame using Distributed Fibre Optical Sensor. Int. J. Archit. Eng. Technol. [Internet]. 2025 Dec. 10 [cited 2026 Feb. 11];12:209-24. Available from: https://www.avantipublishers.com/index.php/ijaet/article/view/1735

Similar Articles

11-20 of 29

You may also start an advanced similarity search for this article.