Abstract
The thermoacoustic effect can convert heat in a fire into sound energy, which has considerable application prospects in fire detection. A fire detection and alarm device based on thermoacoustic effect has been developed for building fire prevention. The main content of thermoacoustic effect is briefly introduced, and the application of thermoacoustic devices in fire detection is explained. A fire detection and alarm device based on thermoacoustic effect has been established. The total length of the entire device is 330 mm, with a uniform inner diameter of 40 mm. Finite element numerical simulation software is used to calculate and analyze detection and alarm devices. The characteristics of sound pressure level changing with the temperature difference of the heat exchanger were analyzed, and then the experimental, theoretical, and simulated sound response frequency values were calculated. Numerical simulations demonstrate the nonlinear multi field coupling characteristics in the process of thermoacoustic conversion. The established device begins to produce sound under the condition of a temperature difference of 194 ℃ in the heat exchanger, with a sound pressure level of 120 dB. Numerical simulation can better reflect the sound pressure level and frequency characteristics of the device. The distribution characteristics of flow and temperature can effectively demonstrate nonlinear dissipation properties. Thermoacoustic conversion exhibits characteristics of compression and heat transfer at a small scale. Thermoacoustic devices can convert the heat in a fire into acoustic alarm signals, and have great potential for application in the field of fire alarm in the future. This study provides new ideas for the construction of new fire alarm devices and important theoretical basis for the research of thermoacoustic alarm devices.
References
Barillo DJ, Goode R. Fire fatality study: demographics of fire victims. Burns. 1996, 22: 85-8. https://doi.org/10.1016/0305-4179(95)00095-X
Król A, Szewczyński K, Król M, Koper P, Bielawski J, Węgrzyński W. Full-scale experimental, numerical, and theoretical research on the spatio-temporal evolution of the flow structure in longitudinal and semi-transversal ventilated tunnels. Tunn Undergr Space Technol. 2024; 147: 105721. https://doi.org/10.1016/j.tust.2024.105721
Jiang Y, Li G, Wang J. Photoacoustic compound fire alarm system for detecting particles and carbon monoxide in smoke. Fire Technol. 2016; 52(5): 1255-69. https://doi.org/10.1007/s10694-015-0542-6
Qiu X, Wei Y, Li N, Guo A, Zhang E, Li C, et al. Development of an early warning fire detection system based on a laser spectroscopic carbon monoxide sensor using a 32-bit system-on-chip. Infrared Phys Technol. 2019; 96: 44-51. https://doi.org/10.1016/j.infrared.2018.11.013
Swift GW. Thermoacoustic engines. J Acoust Soc Am. 1988; 84: 1145-80. https://doi.org/10.1121/1.396617
Wen J, Zhang L, Kan H, Liu S, Wang K. Advances in the utilization and suppression of thermoacoustic effect: A review. Int J Heat Mass Tranf. 2024; 231: 125758. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125758
Wigdan K, Paul R, Jon M, David H. Asymmetrically heated multi-stage travelling-wave thermoacoustic electricity generator. Energy. 2021; 235: 121312. https://doi.org/10.1016/j.energy.2021.121312
Hiroshi Y, Yasuaki O, Masashi K, Masahito N, Hideki Y. Simulation of thermoacoustic heat pump effects driven by acoustic radiation in a cavity flow. Int J Heat Mass Tranf. 2022; 185: 122424. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122424
Hu Y, Chi J, Wu Z, Zhang L, Yang R, Xu J, et al. Study on a high-performance heatdriven thermoacoustic heat pump. Appl Therm Eng. 2024, 253: 123790. https://doi.org/10.1016/j.applthermaleng.2024.123790
Ali U, Al-Mufti O, Janajreh I. Harnessing sound waves for sustainable energy: Advancements and challenges in thermoacoustic technology. Energy Nexus. 2024; 15: 100320. https://doi.org/10.1016/j.nexus.2024.100320
Chi J, Xu J, Zhang L, Wu Z, Hu J, Luo E. Study of a gas-liquid-coupled heat-driven room-temperature thermoacoustic refrigerator with different working gases. Energy Convers Manage. 2021; 246: 114657. https://doi.org/10.1016/j.enconman.2021.114657
Nathan B. Michael L. Steven F. Ramon GZ. High-fidelity numerical simulations of a standing-wave thermoacoustic engine. Appl Energy. 2024; 360: 122817. https://doi.org/10.1016/j.apenergy.2024.122817
Liu L, Cai J, Liu Y. Structural optimization of resonance tubes for a looped thermoacoustic engine with multiple heat sources. Case Stud Therm Eng. 2023; 49: 103344. https://doi.org/10.1016/j.csite.2023.103344
Chen G, Li Z, Li X, Xu J, Sun W, Tang L, et al. Optimal cross-sectional area ratio between porous material and resonance tube for the onset of self-excited oscillations in standing-wave thermoacoustic engines. Therm Sci Eng Prog. 2023; 41: 101856. https://doi.org/10.1016/j.tsep.2023.101856
Jesse C, Revant A, Mohamed M, Mostafa N. Traveling wave thermoacoustic refrigeration with variable phase-coordinated boundary conditions. J Acoust Soc Am. 2024; 154(6): 3943-54. https://doi.org/10.1121/10.0023954
Backhaus S, Swift GW. A thermoacoustic Stirling heat engine. Nature. 1999; 399: 335-8. https://doi.org/10.1038/20624
Rayleigh L. The theory of sound. UK: Dover Publication, 1896.
Zhu Q, Yu J, Zhu H. The influence of thermoacoustic effect and microstructure parameters on acoustic performance of porous ceramic fiber material. Appl Acoust. 2025; 240(5): 110915. https://doi.org/10.1016/j.apacoust.2025.110915
Rott N. Damped and thermally driven acoustic oscillations in wide and narrow tubes. J Appl Math Phys. 1969; 20(2): 230-40. https://doi.org/10.1007/BF01595562
Roberto B, Armando DM, Antonio F, Nicola M. Design and performance of a ThermoAcoustic Electric Generator powered by waste-heat based on linear and nonlinear modelling. Appl Therm Eng. 2025; 276: 126938. https://doi.org/10.1016/j.applthermaleng.2025.126938
Prashantha BG, Seetharamu S, Narasimham GSV, Manjunatha K. Effect of gas spacing and resonance frequency on theoretical performance of thermoacoustic refrigerators. Int J Air-Cond Refrig. 2023; 31(1): 1-14. https://doi.org/10.1007/s44189-023-00027-7
Yao C, Liu J, Yan J. Numerical investigation of nonlinear effects in a standing wave thermoacoustic engine using the discontinuous Galerkin method. Int J Heat Mass Tran. 2023; 216: 124526. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124526
Zhang D, Guan J, He Z, Shen C, Li H, Tang S, et al. Numerical analysis of thermoacoustic heat pump driving by prime mover. Heat Transf Res. 2025; 56(3): 15-29. https://doi.org/10.1615/HeatTransRes.2024053033
Guo L, Zhao D, Yu D, Xu J, Su Y, Sun D, et al. Energy conversion performance in looped and stirling traveling-wave and standing-wave thermoacoustic engines. Appl Therm Eng. 2024; 258: 124622. https://doi.org/10.1016/j.applthermaleng.2024.124622
Diana BC, Yann F, Catherine W. Gravity effects in a compact thermoacoustic cavity. J Acoust Soc Am. 2025; 157(2): 833-44. https://doi.org/10.1121/10.0035581
Nathan B, Michael L, Steven F, Ramon GZ. High-fidelity numerical simulations of a standing-wave thermoacoustic engine. Appl Energy. 2024; 360: 122817. https://doi.org/10.1016/j.apenergy.2024.122817
Symko OG, Abdel-Rahman E, Kwon YS, Emmi M, Behunin R. Design and development of high-frequency thermoacoustic engines for thermal management in microelectronics. Microelectron J. 2004; 35(2): 185-91. https://doi.org/10.1016/j.mejo.2003.09.017
Shen C, He Y, Li Y, Ke H, Zhang D, Liu Y. Performance of solar powered thermoacoustic engine at different tilted angles. Appl Therm Eng. 2009; 19(13): 2745-56. https://doi.org/10.1016/j.applthermaleng.2009.01.008
Emmanuel CN, Azrai A. Experimental study on the performance of the thermoacoustic refrigerating system. Appl Therm Eng. 2009; 29(13): 2672-9. https://doi.org/10.1016/j.applthermaleng.2008.12.036
Buda-Ortins KE. Prototype design for thermoacoustic flashover detector (Thesis). The University of Maryland; 2012. Available from: http://hdl.handle.net/1903/13069
Hamburger KA. Optimization and implementation of a thermoacoustic flashover detector (Thesis). The University of Maryland; 2013. Available from: http://hdl.handle.net/1903/14795
Jeffrey ZT. Response of a thermoacoustic flashover detector to thermal radiation (Thesis). The University of Maryland; 2014. https://doi.org/10.13016/M2DG7V
Pan N, Wang S, Shen C. A fundamental study on characteristic of thermoacoustic engine with different tilt angles. Int J Heat Mass Tranf. 2014; 74: 228-37. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.019
Kenichiro T, Yuki U. Critical temperature of traveling- and standing-wave thermoacoustic engines using a wet regenerator. Appl Energy. 2017; 196: 62-7. https://doi.org/10.1016/j.apenergy.2017.04.004
Raspet R, Slaton WV, Hickey CJ, Hiller RA. Theory of inert gas-condensing vapor thermoacoustics: Transport equations. J Acoust Soc Am. 2002; 112(4): 1414-22. https://doi.org/10.1121/1.1508113
Rogozinski K, Nowak I, Nowak G. Modeling the operation of a thermoacoustic engine. Energy. 2017; 138: 249-56. https://doi.org/10.1016/j.energy.2017.07.058
Jaworski AJ, Mao X, Mao X, Yu.Z. Entrance effects in the channels of the parallel plate stack in oscillatory flow conditions. Exp Therm Fluid Sci. 2009; 33: 495-502. https://doi.org/10.1016/j.expthermflusci.2008.11.003
Kuzuu K, Hasegawa S. Effect of non-linear flow behavior on heat transfer in a thermoacoustic engine core. Int J Heat Mass Tranf. 2017; 108: 1591-601. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.064
Jung S, Matveev KI. Study of a small-scale standing-wave thermoacoustic engine. Proc Inst Mech Eng C J Mech Eng Sci. 2010; 224(1): 133-41. https://doi.org/10.1243/09544062JMES1594
Hao XH, Ju YL, Behera U, Kasthurirengan S. Influence of working fluid on the performance of a standing-wave thermoacoustic prime mover. Cryogenics. 2011; 51(9): 559-61. https://doi.org/10.1016/j.cryogenics.2011.07.004
Tang K, Huang ZJ, Jin T, Chen GB. Influence of acoustic pressure amplifier dimensions on the performance of a standing-wave thermoacoustic system. Appl Therm Eng. 2009; 29(5-6): 950-6. https://doi.org/10.1016/j.applthermaleng.2008.05.001
Mumith JA, Mkatsori C, Karayiannis TG. Design of a thermoacoustic heat engine for low temperature waste heat recovery in food manufacturing. Appl Therm Eng. 2014; 65(1-2): 588-96. https://doi.org/10.1016/j.applthermaleng.2014.01.042
Zhang D, He Y, Yang W, Gu X, Wang Y, Tao W. Experimental visualization and heat transfer analysis of the oscillatory flow in thermoacoustic stacks. Exp Therm Fluid Sci. 2013; 46: 221-31. https://doi.org/10.1016/j.expthermflusci.2012.12.014
Chen G, Kai W, Liu L, Gao L, Li Z, Tang L. Experimental evaluation of an integrated thermoacoustic stack. Therm Sci Eng Prog. 2025; 64: 103810. https://doi.org/10.1016/j.tsep.2025.103810
Giulio ED, Meglio AD, Massarotti N, Romano RA, Dragonetti R. Oriented fibers stacks for thermoacoustic devices. Appl Energy. 2024; 373: 123959. https://doi.org/10.1016/j.apenergy.2024.123959
Zhang Y, Shi X, Li Y, Zhang Y, Liu Y. Characteristics of thermoacoustic conversion and coupling effect at different temperature gradients. Energy. 2020; 197(15): 117228. https://doi.org/10.1016/j.energy.2020.117228
Blanc N, Laufer M, Frankel S, Ramon GZ. High-fidelity numerical simulations of a standing-wave thermoacoustic engine. Appl Energy. 2024; 360(15): 122817. https://doi.org/10.1016/j.apenergy.2024.122817
Hireche O, Weisman C, Baltean-Carlès D. Numerical model of a thermoacoustic engine. C R Mec. 2010; 338: 18-23. https://doi.org/10.1016/j.crme.2009.12.006
Yu G, Dai W, Luo E. CFD simulation of a 300 Hz thermoacoustic standing wave engine. Cryogenics. 2010; 50: 615-22. https://doi.org/10.1016/j.cryogenics.2010.02.011
Wang K, Tao S, Li Z, Li X, Tang L, Chen G. Investigation on the hysteresis behavior of a quarter-wavelength standing-wave thermoacoustic engine. Proc Inst Mech Eng C J Mech Eng Sci. 2025; 290(15): 110084. https://doi.org/10.1016/j.ijmecsci.2025.110084
Niu Y, Zhang H, Jiang H, Hu L, Liu Y. Numerical studies on mode transition and performance of the thermoacoustic engine coupled with acoustic pressure amplifier tube and load. Energy. 2024; 307(30): 132746. https://doi.org/10.1016/j.energy.2024.132746
Vorotnikov GV, Zinovyev EA, Nekrasova SO. Thermodynamic cycle of the traveling wave thermoacoustic engine. Case Stud Therm Eng. 2022; 36: 102216. https://doi.org/10.1016/j.csite.2022.102216

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2025 Xueqiang Shi, Xuhui Ren, Biao Shi, Bin Chi, Kaishu Huang, Wenhai Li, Yutao Zhang, Yali Li, Mucong Deng, Weiguo Cao, Hongzhen Duan