Finite Element Simulation of Jet Combustor Using Local Extinction Approach with in Eddy Dissipation Concept
PDF

Keywords

Openfoam
Combustor
Steady rans models
Turbulent reacting flow
Eddy dissipation concept

How to Cite

1.
Ghasemi E, Soleimani S, Almas M. Finite Element Simulation of Jet Combustor Using Local Extinction Approach with in Eddy Dissipation Concept. J. Adv. Therm. Sci. Res. [Internet]. 2015 Jan. 9 [cited 2022 May 18];1(2):57-65. Available from: https://www.avantipublishers.com/index.php/jatsr/article/view/1204

Abstract

Non-premixed turbulent reacting flow in a methane-fuelled coaxial jet combustor has been studied numerically employing Reynolds Averaged Navier-Stokes (RANS) models. A Finite Element Method (FEM) based solver and Eddy Dissipation Concept (EDC) is used to simulate the methane air reaction inside the combustor. Simulations were carried out using the k-w (k-omega) turbulence model to handle the fluid flow simulation along with heat transfer and chemical reaction. The results were compared to available LES numerical results and experimental data for predicting velocity, and temperature fields. Velocity, temperature and concentration of the different species are also plotted at different cross sections of the methane burner.

https://doi.org/10.15377/2409-5826.2014.01.02.4
PDF

References

Agrawal GK, Chakraborty S, Som SK. Heat transfer characteristics of premixed flame impinging upwards to plane surfaces inclined with the flame jet axis. Int. J. Heat. Mass. Trans 2010; 53: 1899-1907. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.12.068

Yaga M, Endo H, Yamamoto T, Aoki H, Miura T. Modeling of eddy characteristic time in LES for calculating turbulent diffusion flame. International Journal of Heat and Mass Transfer 2002; 45: 2343-2349. http://dx.doi.org/10.1016/S0017-9310(01)00329-5

Lee KW, Choi DH. Numerical study on high-temperature diluted air combustion for the turbulent jet flame in crossflow using an unsteady flamelet model. Int. J. Heat. Mass. Trans 2009; 52:5740-5750. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.08.014

Khanafer K, Aithal SM. Fluid-dynamic and NOx computation in swirl burners. International Journal of Heat and Mass Transfer 2011; 54:5030-5038. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.07.017

Yeh CL. Numerical analysis of the combustion and fluid flow in a carbon monoxide boiler. International Journal of Heat mand Mass Transfer 2013; 59:172-190. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.020

Saqr KM, Aly HS, Sies MM, Wahid MA. Effect of free stream turbulence on NOx and soot formation in turbulent diffusion CH4-air flames. International Communications in Heat and Mass Transfer 2010; 37:611-617. http://dx.doi.org/10.1016/j.icheatmasstransfer.2010.02.008

Peters N. Turbulent Combustion, Cambridge University Press 2000. http://dx.doi.org/10.1017/CBO9780511612701

Poinsot T, Veynante D. Theoretical and Numerical Combustion, Edwards Publishing 2001.

Artemov V, Beale SB, de Vahl Davis G, Escudier MP, Fueyo N, Launder BE, Leonardi E, Malin MR, Minkowycz WJ, Patankar SV, Pollard A, Rodi W, Runchal A, Vanka SP. A tribute to D.B. Spalding and his contributions in science and engineering. Int. J. Heat. Mass. Trans 2009; 52:3884-3905. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.03.038

Magnussen BF. Modeling of NOx and soot formation by the Eddy Dissipation Concept. 1st topic Oriented Technical Meeting 17-19 October, Int. Flame Research Foundation, Amsterdam, Holland 1989.

Magnussen BF, Hjertager BH. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc Combust Inst 1976; 16:719- 729. http://dx.doi.org/10.1016/S0082-0784(77)80366-4

Gran IR, Magnussen BF. A numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence of combustion modeling and finite-rate chemistry. Combust Sci Technol 1996; 119:191-217. http://dx.doi.org/10.1080/00102209608951999

Myhrvold T, Ertesvåg IS, Gran IR, Cabra R, Chen JY. A numerical investigation of a lifted H2/N2 turbulent jet flame in a vitiated coflow. Combust Sci Technol 2006; 178:1001- 1030. http://dx.doi.org/10.1080/00102200500270106

Ghasemi E, McEligot DM, Nolan KP, Crepeau J, Tokuhiro A, Budwig RS. Entropy generation in a transitional boundary layer region under the influence of freestream turbulence using transitional RANS models and DNS. Int. Commun. Heat. Mass. Trans 2013, 41:10-16. http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.11.005

E.Ghasemi, D. M. McEligot, K. Nolan, J. Crepeau, A. Siahpush, R. S. Budwig, Effects of adverse and favorable pressure gradients on entropy generation in a transitional boundary layer region under the influence of freestream turbulence, Int. J. Heat. Mass. Trans 77 (2014) 475-488. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.05.028

Ghasemisahebi E. Entropy generation in transitional boundary layers. LAP LAMBERT Academic Publishing 2013.

http://www.comsol.com/

Owen FK, Spadaccini LJ, Bowman CT. Pollutant formation and energy release in confined turbulent diffusion flames. Proc Combust Inst 1976; 16:105-117. http://dx.doi.org/10.1016/S0082-0784(77)80317-2

Pierce CD, Moin P. Progress-variable approach for largeeddy simulation of non-premixed turbulent combustion. J Fluid Mech 2004; 504:73-97. http://dx.doi.org/10.1017/S0022112004008213

Taeibi-Rahni M, Ramezanizadeh M, Ganji DD, Darvan A, Ghasemi E, Soleimani S, Bararni H. Comparative study of large eddy simulation of film cooling using a dynamic globalcoefficient subgrid scale eddy-viscosity model with RANS and Smagorinsky Modeling. Int. Commun. Heat. Mass. Trans 2011; 38:659-667. http://dx.doi.org/10.1016/j.icheatmasstransfer.2011.02.002

Taeibi-Rahni M, Ramezanizadeh M, Ganji DD, Darvan A, Ghasemi E, Soleimani S, Bararni H. Large-eddy simulations of three dimensional turbulent jet in a cross flow using a dynamic subgrid-scale eddy viscosity model with a global model coefficient. World Appl Sci J 2010; 9:1191-1200.

Ghasemi E, Soleimani S, Bararnia H, Domairry G. Influence of Uniform Suction/Injection on Heat Transfer of MHD Hiemenz Flow in Porous Media. ASCE Journal of Engineering Mechanics 2012; 138(1):82-88. http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000301

Ghasemi E , Soleimani S, Bayat M. Control Volume Based Finite Element Method Study of Nano-fluid Natural Convection Heat Transfer in an Enclosure Between a Circular and a Sinusoidal Cylinder. Int. J. Nonlinear. Scienc. Numeric. Simulation 2013; 13(7-8):521-532.

Ghasemi E, Soleimani S, Bararnia H. Natural convection between a circular enclosure and an elliptic cylinder using Control Volume based Finite Element Method. Int. Commun. Heat. Mass. Trans 2012; 39:1035-1044. http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.06.016

Ghasemi E, Bayat M, Bayat M. Visco-Elastic MHD flow of Walters liquid b fluid and heat transfer over a non-isothermal stretching sheet. International Journal of Physical Sciences 2011; 6(21):5022-5039.

Jalaal M, Ghasemi E, Ganji DD, Bararnia H, Soleimani S, Nejad GM, Esmaeilpour M, Effect of temperaturedependency of surface emissivity on heat transfer using the parameterized perturbation method. Thermal Science 2011; 15:123-125. http://dx.doi.org/10.2298/TSCI11S1123J

Bararnia H, Ghasemi E, Soleimani S, Baraei A, Ganji DD. HPM-Padé method on natural convection of Darcian fluid about a vertical full cone embedded in porous media. Journal of Porous Media 2011; 14:545-553. http://dx.doi.org/10.1615/JPorMedia.v14.i6.80

Bararnia H, Ghasemi E, Domairry G, Soleimani S. Behavior of micro-polar flow due to linear stretching of porous sheet with injection and suction. Advances in Engineering software 2010; 41:893-897. http://dx.doi.org/10.1016/j.advengsoft.2009.12.007

Bararnia H, Ghasemi E, Soleimani S, Ghotbi AR, Ganji DD. Solution of the Falkner-Skan wedge flow by HPMPade’method. Advances in Engineering Software 2012; 43:44-52. http://dx.doi.org/10.1016/j.advengsoft.2011.08.005

Kutanaei SS, Ghasemi E, Bayat M. Mesh-free modeling of two-dimensional heat conduction between eccentric circular cylinders. Int.l J. Phys. Scienc 2011; 6(16):4044 - 4052.

Bararnia H, Jalaal M, Ghasemi E, Soleimani S, Ganji DD, Mohammadi F. Numerical simulation of joule heating phenomenon using meshless RBF-DQ method. International Journal of Thermal Sciences 2010; 49:2117-2127. http://dx.doi.org/10.1016/j.ijthermalsci.2010.06.008

Seyyedi SM, Soleimani S, Ghasemi E, Ganji DD, gorji M, Bararnia H. Numerical Investigation of Laminar Mixed Convection in a Cubic Cavity by MRT-LBM: Effects of the Sliding Direction. Numerical Heat Transfer A 2013; 63:285- 304. http://dx.doi.org/10.1080/10407782.2013.730456

Soleimani S, Jalaal M, Bararnia H, Ghasemi E, Ganji DD, Mohammadi F. Local RBF-DQ method for two-dimensional transient heat conduction problems. Int. Commun. Heat. Mass. Trans 2010; 37:1411-1418. http://dx.doi.org/10.1016/j.icheatmasstransfer.2010.06.033

Jalaal M, Soleimani S, Domairry G, Ghasemi E, Bararnia H, Mohammadi F, Barari A. Numerical simulation of voltage electric field in complex geometries for different electrode arrangements using meshless local MQ-DQ method. Journal of Electrostatics 2011; 69:168-175. http://dx.doi.org/10.1016/j.elstat.2011.03.005

Soleimani S, Ganji DD, Gorji M, Bararnia H, Ghasemi E, Optimal location of a pair heat source-sink in an enclosed square cavity with natural convection through PSO algorithm. Int. Commun. Heat. Mass. Trans 2011; 38:652-658. http://dx.doi.org/10.1016/j.icheatmasstransfer.2011.03.004

Moghimi SM, Domairry G, Bararni H, Ghasemi E, Soleimani S. Application of homotopy analysis method to solve MHD Jeffery-Hamel flows in non-parallel walls. Advances in Engineering Software 42 (2011) 108-113. http://dx.doi.org/10.1016/j.advengsoft.2010.12.007

Moghimi SM, Domairry G, Bararni H, Soleimani S, Ghasemi E. Numerical Study of Natural Convection in an Inclined Lshaped Porous Enclosure. Adv Theor Appl Mech 2012; 5:237 - 245.

Ganji DD, Bararnia H, Soleimani S, Ghasemi E. Analytical solution of the magneto-hydrodynamic flow over a nonlinear stretching sheet. Modern Phy. Letter B 2009; 23:2541-2556. http://dx.doi.org/10.1142/S0217984909020692

Soleimani S, Ganji DD, Ghasemi E, Jalaal M, Bararnia H. Meshless local RBF-DG for 2-D heat conduction: A comparative study. Thermal Science 2011; 15:117-121.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.