Fabrication and Investigation of Novel Cu2O-doped CaCO3 Composites-based Thermochemical Energy Storage System for Concentrating Solar Power Application

Authors

  • Azhar Abbas Khosa School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
  • Xinyue Han School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
  • Ghulam Abbas Ashraf New Uzbekistan University, Mustaqillik Ave. 54, Tashkent, 100007, Uzbekistan

DOI:

https://doi.org/10.15377/2409-5826.2024.11.3

Keywords:

Catalysis, Kinetic Analysis, Thermal energy storage, Non-isothermal methods, Physical characterizations

Abstract

The limited solar energy absorption capacity of CaCO3 hinders its efficacy in thermochemical energy storage (TCES) systems for concentrated solar power (CSP) facilities. This study aims to tackle this problem by introducing Cu2O as a dopant in CaCO3. Cu2O possesses a bandgap that is more conducive to solar absorption. This study examines the structural, optical, and thermal characteristics of CaCO3 doped with Cu2O to improve its effectiveness in TCES applications. Therefore, the current study investigates the sunlight absorption of CaCO3 material after doping Cu2O. Cu2O in CaCO3 is doped and its UV, FTIR, and XRD characteristics are analyzed. Furthermore, non-isothermal and isothermal calcination was conducted to determine the kinetics and lower the calcination temperature limit. The results reveal that Cu2O introduced no new phase in CaCO3, and XRD data confirmed it. UV data reveals that the Cu2O-doped CaCO3 has a bandgap of 5.01 eV, while pure CaCO3 has a bandgap of 5.30 eV. According to the kinetic analysis, Cu2O-doped CaCO3 follows the three-dimensional diffusion (D3) model. Its activation energy is 644.3 kJ/mol, while pure CaCO3 follows the D1 model, and its activation energy is calculated as 234.8 kJ/mol. The lowest calcination temperature limit for pure and Cu2O-doped CaCO3 samples is 750°C. Hence, the proposed material is recommended for use in thermal energy storage applications.

Downloads

Download data is not yet available.

References

International Energy Agency. Technology roadmap solar thermal electricity. OECD Publishing; 2015.

International Renewable Energy Agency. Renewable power generation costs in 2020. eBook Partnership; 2022.

del Río P, Peñasco C, Mir-Artigues P. An overview of drivers and barriers to concentrated solar power in the European Union. Renew Sustain Energy Rev. 2018; 81(1): 1019-29. https://doi.org/10.1016/j.rser.2017.06.038 DOI: https://doi.org/10.1016/j.rser.2017.06.038

Ortiz C, Valverde JM, Chacartegui R, Perez-Maqueda LA. Carbonation of limestone derived CaO for thermochemical energy storage: from kinetics to process integration in concentrating solar plants. ACS Sustain Chem Eng. 2018; 6(5): 6404-17. https://doi.org/10.1021/acssuschemeng.8b00199 DOI: https://doi.org/10.1021/acssuschemeng.8b00199

Valverde JM, Barea-López M, Perejón A, Sánchez-Jiménez PE, Pérez-Maqueda LA. Effect of thermal pretreatment and nanosilica addition on limestone performance at calcium-looping conditions for thermochemical energy storage of concentrated solar power. Energy Fuels. 2017; 31(4): 4226-36. https://doi.org/10.1021/acs.energyfuels.6b03364 DOI: https://doi.org/10.1021/acs.energyfuels.6b03364

Ho CK. A review of high-temperature particle receivers for concentrating solar power. Appl Therm Eng. 2016; 109(B): 958-69. https://doi.org/10.1016/j.applthermaleng.2016.04.103 DOI: https://doi.org/10.1016/j.applthermaleng.2016.04.103

Kearney D, Kelly B, Herrmann U, et al. Engineering aspects of a molten salt heat transfer fluid in a trough solar field. Energy. 2004; 29(5-6): 861-70. https://doi.org/10.1016/S0360-5442(03)00191-9 DOI: https://doi.org/10.1016/S0360-5442(03)00191-9

Vignarooban K, Xu X, Arvay A, Hsu K, Kannan AM. Heat transfer fluids for concentrating solar power systems—a review. Appl Energy. 2015; 146: 383-96. https://doi.org/10.1016/j.apenergy.2015.01.125 DOI: https://doi.org/10.1016/j.apenergy.2015.01.125

Shah N, Arshad A, Khosa AA, Ali HM, Ali M. Thermal analysis of a mini solar pond of small surface area while extracting heat from lower convective layer. Therm Sci. 2019; 23(2A): 763-76.

Cot-Gores J, Castell A, Cabeza LF. Thermochemical energy storage and conversion: a state-of-the-art review of the experimental research under practical conditions. Renew Sustain Energy Rev. 2012; 16(7): 5207-24. https://doi.org/10.1016/j.rser.2012.04.007 DOI: https://doi.org/10.1016/j.rser.2012.04.007

Pardo P, Deydier A, Anxionnaz-Minvielle Z, Rougé S, Cabassud M, Cognet P. A review on high-temperature thermochemical heat energy storage. Renew Sustain Energy Rev. 2014; 32: 591-610. https://doi.org/10.1016/j.rser.2013.12.014 DOI: https://doi.org/10.1016/j.rser.2013.12.014

Medrano M, Gil A, Martorell I, Potau X, Cabeza LF. State of the art on high-temperature thermal energy storage for power generation. Part 2—case studies. Renew Sustain Energy Rev. 2010; 14(1): 56-72. https://doi.org/10.1016/j.rser.2009.07.036 DOI: https://doi.org/10.1016/j.rser.2009.07.036

Mohan G, Venkataraman MB, Coventry J. Sensible energy storage options for concentrating solar power plants operating above 600°C. Renew Sustain Energy Rev. 2019; 107: 319-37. https://doi.org/10.1016/j.rser.2019.01.062 DOI: https://doi.org/10.1016/j.rser.2019.01.062

Nahhas T, Py X, Sadiki N. Experimental investigation of basalt rocks as storage material for high-temperature concentrated solar power plants. Renew Sustain Energy Rev. 2019; 110: 226-35. https://doi.org/10.1016/j.rser.2019.04.060 DOI: https://doi.org/10.1016/j.rser.2019.04.060

Zalba B, Marín JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003; 23(3): 251-83. https://doi.org/10.1016/S1359-4311(02)00192-8 DOI: https://doi.org/10.1016/S1359-4311(02)00192-8

Nithyanandam K, Pitchumani R. Design of a latent thermal energy storage system with embedded heat pipes. Appl Energy. 2014; 126: 266-80. https://doi.org/10.1016/j.apenergy.2014.03.025 DOI: https://doi.org/10.1016/j.apenergy.2014.03.025

Block T, Schmücker M. Metal oxides for thermochemical energy storage: a comparison of several metal oxide systems. Sol Energy. 2016; 126: 195-207. https://doi.org/10.1016/j.solener.2015.12.032 DOI: https://doi.org/10.1016/j.solener.2015.12.032

Dizaji HB, Hosseini H. A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications. Renew Sustain Energy Rev. 2018; 98: 9-26. https://doi.org/10.1016/j.rser.2018.09.004 DOI: https://doi.org/10.1016/j.rser.2018.09.004

Chacartegui R, Alovisi A, Ortiz C, Valverde JM, Verda V, Becerra JA. Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle. Appl Energy. 2016; 173: 589-605. https://doi.org/10.1016/j.apenergy.2016.04.053 DOI: https://doi.org/10.1016/j.apenergy.2016.04.053

Rhodes NR, Barde A, Randhir K, et al. Solar thermochemical energy storage through carbonation cycles of SrCO3/SrO supported on SrZrO3. ChemSusChem. 2015; 8(22): 3793-8. https://doi.org/10.1002/cssc.201501023 DOI: https://doi.org/10.1002/cssc.201501023

Qu X, Li Y, Li P, Wan Q, Zhai F. The development of metal hydrides using as concentrating solar thermal storage materials. Front Mater Sci. 2015; 9: 317-31. https://doi.org/10.1007/s11706-015-0311-y DOI: https://doi.org/10.1007/s11706-015-0311-y

Sattler C, Roeb M, Agrafiotis C, Thomey D. Solar hydrogen production via sulphur-based thermochemical water-splitting. Sol Energy. 2017; 156: 30-47. https://doi.org/10.1016/j.solener.2017.05.060 DOI: https://doi.org/10.1016/j.solener.2017.05.060

Chen C, Aryafar H, Lovegrove KM, Lavine AS. Modeling of ammonia synthesis to produce supercritical steam for solar thermochemical energy storage. Sol Energy. 2017; 155: 363-71. https://doi.org/10.1016/j.solener.2017.06.049 DOI: https://doi.org/10.1016/j.solener.2017.06.049

Hong H, Jin H, Ji J, Wang Z, Cai R. Solar thermal power cycle with integration of methanol decomposition and middle-temperature solar thermal energy. Sol Energy. 2005; 78(1): 49-58. https://doi.org/10.1016/j.solener.2004.06.019 DOI: https://doi.org/10.1016/j.solener.2004.06.019

Schmidt M, Linder M. Power generation based on the Ca(OH) 2/CaO thermochemical storage system—experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design. Appl Energy. 2017; 203: 594-607. https://doi.org/10.1016/j.apenergy.2017.06.063 DOI: https://doi.org/10.1016/j.apenergy.2017.06.063

Romeo LM, Lara Y, Lisbona P, Martínez A. Economical assessment of competitive enhanced limestones for CO2 capture cycles in power plants. Fuel Process Technol. 2009; 90(6): 803-11. https://doi.org/10.1016/j.fuproc.2009.03.014 DOI: https://doi.org/10.1016/j.fuproc.2009.03.014

Cormos CC. Economic evaluations of coal-based combustion and gasification power plants with post-combustion CO2 capture using calcium looping cycle. Energy. 2014; 78: 665-73. https://doi.org/10.1016/j.energy.2014.10.054 DOI: https://doi.org/10.1016/j.energy.2014.10.054

N’Tsoukpoe KE, Liu H, Le Pierrès N, Luo L. A review on long-term sorption solar energy storage. Renew Sustain Energy Rev. 2009; 13(9): 2385-96. https://doi.org/10.1016/j.rser.2009.05.008 DOI: https://doi.org/10.1016/j.rser.2009.05.008

Martínez A, Lara Y, Lisbona P, Romeo LM. Energy penalty reduction in the calcium looping cycle. Int J Greenh Gas Control. 2012; 7: 74-81. https://doi.org/10.1016/j.ijggc.2011.12.005 DOI: https://doi.org/10.1016/j.ijggc.2011.12.005

Duelli G (Varela), Charitos A, Diego ME, Stavroulakis E, Dieter H, Scheffknecht G. Investigations at a 10 kWth calcium looping dual fluidized bed facility: limestone calcination and CO2 capture under high CO2 and water vapor atmosphere. Int J Greenh Gas Control. 2015; 33: 103-12. https://doi.org/10.1016/j.ijggc.2014.12.006 DOI: https://doi.org/10.1016/j.ijggc.2014.12.006

Lee LM, Jang YN, Ryu KW, Kim W, Bang JH. Mineral carbonation of flue gas desulfurization gypsum for CO2 sequestration. Energy. 2012; 47(1): 370-7. https://doi.org/10.1016/j.energy.2012.09.009 DOI: https://doi.org/10.1016/j.energy.2012.09.009

N’Tsoukpoe KE, Restuccia G, Schmidt T, Py X. The size of sorbents in low-pressure sorption or thermochemical energy storage processes. Energy. 2014; 77: 983-98. https://doi.org/10.1016/j.energy.2014.10.013 DOI: https://doi.org/10.1016/j.energy.2014.10.013

Perejón A, Miranda-Pizarro J, Pérez-Maqueda LA, Valverde JM. On the relevant role of solids residence time on their CO2 capture performance in the calcium looping technology. Energy. 2016; 113: 160-71. https://doi.org/10.1016/j.energy.2016.07.028 DOI: https://doi.org/10.1016/j.energy.2016.07.028

Khosa AA, Yan J, Zhao CY. Investigating the effects of ZnO dopant on the thermodynamic and kinetic properties of CaCO3/CaO TCES system. Energy. 2021; 215: 119132. https://doi.org/10.1016/j.energy.2020.119132 DOI: https://doi.org/10.1016/j.energy.2020.119132

Lu S, Wu S. Calcination-carbonation durability of nano CaCO3 doped with Li2SO4. Chem Eng J. 2016; 294: 22-9. https://doi.org/10.1016/j.cej.2016.02.100 DOI: https://doi.org/10.1016/j.cej.2016.02.100

Khosa AA, Shah N, Han X, Naveed H. Silica dopant effect on the performance of calcium carbonate/calcium oxide-based thermal energy storage system. Therm Sci. 2024; 28(2A): 837-50. https://doi.org/10.2298/TSCI230422165K DOI: https://doi.org/10.2298/TSCI230422165K

Jing JY, Li TY, Zhang XW, Wang SD, Feng J, Turmel WA, et al. Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism. Appl Energy. 2017; 199: 225-33. https://doi.org/10.1016/j.apenergy.2017.03.131 DOI: https://doi.org/10.1016/j.apenergy.2017.03.131

Jin D, Yu X, Yue L, Wang L. Decomposition kinetics study of AlOOH coated calcium carbonate. Mater Chem Phys. 2009; 115(1): 418-22. https://doi.org/10.1016/j.matchemphys.2008.12.013 DOI: https://doi.org/10.1016/j.matchemphys.2008.12.013

Wang Y, Zhu Y, Wu S. A new nano CaO-based CO2 adsorbent prepared using an adsorption phase technique. Chem Eng J. 2013; 218: 39-45. https://doi.org/10.1016/j.cej.2012.11.095 DOI: https://doi.org/10.1016/j.cej.2012.11.095

Chen H, Zhang P, Duan Y, Zhao C. Reactivity enhancement of calcium-based sorbents by doping with metal oxides through the sol-gel process. Appl Energy. 2016; 162: 390-400. https://doi.org/10.1016/j.apenergy.2015.10.035 DOI: https://doi.org/10.1016/j.apenergy.2015.10.035

Yanase I, Maeda T, Kobayashi H. The effect of addition of a large amount of CeO2 on the CO2 adsorption properties of CaO powder. Chem Eng J. 2017; 327: 548-54. https://doi.org/10.1016/j.cej.2017.06.140 DOI: https://doi.org/10.1016/j.cej.2017.06.140

Chen X, Jin X, Liu Z, Ling X, Wang Y. Experimental investigation on the CaO/CaCO3 thermochemical energy storage with SiO2 doping. Energy. 2018; 155: 128-38. https://doi.org/10.1016/j.energy.2018.05.016 DOI: https://doi.org/10.1016/j.energy.2018.05.016

Shui M, Yue L, Hua Y, Xu Z. The decomposition kinetics of the SiO2 coated nano-scale calcium carbonate. Thermochim Acta. 2002; 386(1): 43-9. https://doi.org/10.1016/S0040-6031(01)00723-7 DOI: https://doi.org/10.1016/S0040-6031(01)00723-7

Mathew A, Nadim N, Chandratilleke TT, Paskevicius M, Humphries TD, Buckley CE. Kinetic investigation and numerical modelling of CaCO3/Al2O3 reactor for high-temperature thermal energy storage application. Sol Energy. 2022; 241: 262-74. https://doi.org/10.1016/j.solener.2022.06.005 DOI: https://doi.org/10.1016/j.solener.2022.06.005

Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964; 201(4914): 68-9. https://doi.org/10.1038/201068a0 DOI: https://doi.org/10.1038/201068a0

Achar BN, Brindley GW, Sharp JH. Kinetics and mechanism of dehydroxylation processes. III. Applications and limitations of dynamic methods. In: Proceedings of the International Clay Conference. Jerusalem: 1966.

Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957; 29(11): 1702-6. https://doi.org/10.1021/ac60131a045 DOI: https://doi.org/10.1021/ac60131a045

Khosa AA, Zhao C. Heat storage and release performance analysis of CaCO3/CaO thermal energy storage system after doping nano silica. Sol Energy. 2019; 188: 619-30. https://doi.org/10.1016/j.solener.2019.06.048 DOI: https://doi.org/10.1016/j.solener.2019.06.048

Xu TX, Tian XK, Khosa AA, Yan J, Ye Q, Zhao CY. Reaction performance of CaCO3/CaO thermochemical energy storage with TiO2 dopant and experimental study in a fixed-bed reactor. Energy. 2021; 236: 121451. https://doi.org/10.1016/j.energy.2021.121451 DOI: https://doi.org/10.1016/j.energy.2021.121451

Zhang M, He X, Xue Y, Lin Z, Tong NH, Lai W, Liang S. Improving thermoelectric properties of Cu2O powder via interface modification. Solid State Commun. 2022; 357: 114982. https://doi.org/10.1016/j.ssc.2022.114982 DOI: https://doi.org/10.1016/j.ssc.2022.114982

Pan J, Liu G. Chapter Ten - Facet control of photocatalysts for water splitting. In: Mi Z, Wang L, Jagadish C, editors. Semiconductors and Semimetals. Elsevier; 2017, p. 349-91. https://doi.org/10.1016/bs.semsem.2017.04.003 DOI: https://doi.org/10.1016/bs.semsem.2017.04.003

Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011; 520(1): 1-19. https://doi.org/10.1016/j.tca.2011.03.034 DOI: https://doi.org/10.1016/j.tca.2011.03.034

Webb PB, Dearnley JH, McConville JC. Characterization of metal oxide-carbonate composites by X-ray diffraction. J Appl Crystallogr. 2004; 37(5): 631-7.

Sutherland BR, Williams AC, Blake CL. X-ray diffraction studies of calcium carbonate polymorphs. J Solid State Chem. 1980; 32(2): 148-54.

Islam SM, Khan SMZS, Hasan MT. X-ray diffraction and optical studies of Cu2O nanoparticles. Mater Chem Phys. 2014; 147(1-2): 238-44.

Kim HS, Kim SM, Park SM. Optical properties of Cu2O thin films and its application to optoelectronics. J Appl Phys. 2009; 106(12): 123512.

Trinh TT, Chen CHK. Band gap and optical characteristics of CaCO3. Mater Sci Eng B. 2015; 192: 37-42.

Wang LW, Wang XY, Chen HX. Optical and electronic properties of metal oxide composites: Cu2O and CaCO3. J Compos Mater. 2015; 49(21): 2621-30.

Akinmoladun AO, Ojo JO, Akinmoladun DT. FTIR and X-ray diffraction studies of Cu2O nanoparticles synthesized by chemical reduction method. J Nanomater. 2012.

Reddy MM, Reddy VPV. Infrared and Raman spectroscopy of calcium carbonate and its polymorphs. J Mol Struct. 2000; 534(1-3): 1-16.

Downloads

Published

2024-12-17

Issue

Section

Articles

How to Cite

1.
Fabrication and Investigation of Novel Cu2O-doped CaCO3 Composites-based Thermochemical Energy Storage System for Concentrating Solar Power Application. J. Adv. Therm. Sci. Res. [Internet]. 2024 Dec. 17 [cited 2026 Feb. 14];11:53-64. Available from: https://www.avantipublishers.com/index.php/jatsr/article/view/1586

Similar Articles

51-60 of 73

You may also start an advanced similarity search for this article.