Advances in the Fabrication, Mechanisms, and Applications of Monodisperse Droplets in Microfluidics
Abstract - 58
PDF

Keywords

Applications
Microfluidics
Numerical simulation
Monodisperse droplets
Droplet generation mechanisms

How to Cite

1.
Bi C, Wang G, Fu Z, Su W. Advances in the Fabrication, Mechanisms, and Applications of Monodisperse Droplets in Microfluidics. J. Adv. Therm. Sci. Res. [Internet]. 2025 Oct. 29 [cited 2025 Nov. 4];12:21-37. Available from: https://www.avantipublishers.com/index.php/jatsr/article/view/1692

Abstract

Monodisperse microfluidic droplets, with precisely controlled size, high stability, and compartmentalization, have emerged as powerful tools in biomedicine, chemistry, and materials science. This review systematically summarizes key droplet generation methods, including T-junction, flow-focusing, and co-flow configurations, emphasizing how droplet size, frequency, and morphology are governed by channel geometry and operating parameters. Numerical modeling approaches–particularly Volume-of-Fluid (VOF), Level-Set (LS), and Phase-Field (PF) methods–are evaluated for their capabilities in capturing droplet formation dynamics and guiding device design, with VOF highlighted as the most reliable due to its mass-conservation properties. Applications of monodisperse droplets are further discussed in three major domains: biomedicine, chemical reactions, and materials fabrication. Overall, this review consolidates current advances in droplet fabrication, mechanisms, applications and outlines future directions to promote cross-disciplinary innovations.

https://doi.org/10.15377/2409-5826.2025.12.2
PDF

References

Ji H, Lee J, Park J, Kim J, Kim HS, Cho Y. High-aspect-ratio microfluidic channel with parallelogram cross-section for monodisperse droplet generation. Biosensors. 2022; 12(2): 118. https://doi.org/10.3390/bios12020118

Liu B, Wu T, Wang Z, Yang X, Du Y. Synthesis of monodisperse PEG hydrogel microspheres using a droplet microfluidic chip and its size control. J East China Univ Sci Technol. 2014; 40(2): 4. https://doi.org/10.1007/bf03218673

Chen ZK, Kheiri S, Young EWK, Kumacheva E. Trends in droplet microfluidics: From droplet generation to biomedical applications. Langmuir. 2022; 38(20): 6233-48. https://doi.org/10.1021/acs.langmuir.2c00491

Han W, Chen X. New insights into generation of highly controllable monodisperse high-throughput microdroplets in a T-junction microchannel with step structure. J Dispersion Sci Technol. 2021; 42(2): 306-17. https://doi.org/10.1080/01932691.2019.1679643

Lian J, Zheng S, Xu Z, Ruan X. Study on the influence of co-flow on the formation of Janus droplets via step emulsification. Chin J Anal Chem. 2020; 48(1): 57-65. https://doi.org/10.1016/S1872-2040(19)61210-7

Wang CL, Zhang YT, Liu ZH, Ding LK, Jin ZL. Advances in the generation and manipulation of monodisperse droplets in microfluidics. Chem Ind Eng Prog. 2025; 1-16. https://doi.org/10.16085/j.issn.1000-6613.2025-0562

Liu XY. Hydrodynamic mechanism and applications of droplet microfluidic emulsification (PhD thesis). Yangzhou University; 2023. https://doi.org/10.27441/d.cnki.gyzdu.2023.001318

Han W, Chen X. New insights into generation of highly controllable monodisperse high-throughput microdroplets in a T-junction microchannel with step structure. J Dispersion Sci Technol. 2021; 42: 306-17. https://doi.org/10.1080/01932691.2019.1679643

Das S, Unni H. Advancements in microfluidic droplet generation: methods and insights. Microfluid Nanofluid. 2025; 29(4). https://doi.org/10.1007/s10404-025-02796-6

Nguyen MD, Tran KV, Dang CT, Kim GM, Dang TD, Ta HD, et al. Generalized correlation for predicting the droplet size in a microfluidic flow-focusing device under the effect of surfactant. Phys Fluids. 2022; 34(3): 032014. https://doi.org/10.1063/5.0084872

Jena SK, Srivastava T, Bahga SS, Kondaraju S. Effect of channel width on droplet generation inside T-junction microchannel. Phys Fluids. 2023; 35(2): 022107. https://doi.org/10.1063/5.0134087

Fan LL, Wang W, Ju XJ, Liu Z, Xie R, Xu J, et al. High-throughput generation of monodisperse double emulsions via controllable symmetric splitting in Y-shaped microchannels. Chem Eng J. 2024; 498: 155727. https://doi.org/10.1016/j.cej.2024.155727

Kohane DS, Tse JY, Yeo Y, Padera R, Shubina M, Langer R. Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. J Biomed Mater Res A. 2006; 77A(2): 351-61. https://doi.org/10.1002/jbm.a.30654

Kohane DS. Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng. 2007; 96(2): 203-9. https://doi.org/10.1002/bit.21301

Wang L, Loh KC, Tong YW. Immobilization of growing Sphingomonas sp. HXN-200 to gelatin microspheres: Efficient biotransformation of N-Cbz-pyrrolidine and N-Boc-pyrrolidine into hydroxypyrrolidine derivatives. J Biotechnol. 2014; 182: 74-82. https://doi.org/10.1016/j.jbiotec.2014.04.019

Otsuji TG, Bin J, Yoshimura A, Tomura M, Tateyama D, Minami I, et al. A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production. Stem Cell Rep. 2014; 2(5): 734-45. https://doi.org/10.1016/j.stemcr.2014.03.012

Zhang H, Tong SY, Zhang XZ, Cheng SX, Zhuo RX, Li H. Novel solvent-free methods for fabrication of nano- and microsphere drug delivery systems from functional biodegradable polymers. J Phys Chem C. 2007; 111(34): 12681-5. https://doi.org/10.1021/jp074084a

Zia F, Zia KM, Zuber M, Tabasum S, Rehman S. Heparin-based polyurethanes: A state-of-the-art review. Int J Biol Macromol. 2016; 84: 101-11. https://doi.org/10.1016/j.ijbiomac.2015.12.004

He ZY, Wu H, Yan XH, Liu W. Recent advances in droplet microfluidics for microbiology. Chin Chem Lett. 2022; 33(4): 1729-42. https://doi.org/10.1016/j.cclet.2021.08.059

Pompano RR, Liu WS, Du WB, Ismagilov RF. Microfluidics using spatially defined arrays of droplets in one, two, and three dimensions. Annu Rev Anal Chem (Palo Alto Calif). 2011; 4: 59-81. https://doi.org/10.1146/annurev.anchem.012809.102303

Cao L, Cui XY, Hu J, Li ZD, Choi JR, Yang QZ, et al. Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications. Biosens Bioelectron. 2017; 90: 459-74. https://doi.org/10.1016/j.bios.2016.09.082

Han WB, Chen XY. A review on microdroplet generation in microfluidics. J Braz Soc Mech Sci Eng. 2021; 43(5): 12. https://doi.org/10.1007/s40430-021-02971-0

Nisisako T, Torii T, Higuchi T. Droplet formation in a microchannel network. Lab Chip. 2002; 2(1): 24-6. https://doi.org/10.1039/B108740C

Fu TT, Ma YG, Funfschilling D, Zhu CY, Li HZ. Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction. Chem Eng Sci. 2010; 65(12): 3739-48. https://doi.org/10.1016/j.ces.2010.03.012

De Menech M, Garstecki P, Jousse F, Stone HA. Transition from squeezing to dripping in a microfluidic T-shaped junction. J Fluid Mech. 2008; 595: 141-61. https://doi.org/10.1017/S002211200700910X

Arias S, Montlaur A. Numerical and experimental study of the squeezing-to-dripping transition in a T-junction. Microgravity Sci Technol. 2020; 32(4): 687-97. https://doi.org/10.1007/s12217-020-09794-z

Cramer C, Fischer P, Windhab EJ. Drop formation in a co-flowing ambient fluid. Chem Eng Sci. 2004; 59(15): 3045-58. https://doi.org/10.1016/j.ces.2004.04.006

Shen F, Zhang Y, Li C, Pang Y, Liu Z. Merged and alternating droplet generation in double T-junction microchannels using symmetrically inserted capillaries. Microfluid Nanofluidics. 2024; 28(5): 29. https://doi.org/10.1007/s10404-024-02725-z

Kumar P, Pathak M. Droplet generation and breakup in a ribbed microfluidic T-junction for scalable emulsification process. Microsyst Technol. 2023; 29(3): 321-36. https://doi.org/10.1007/s00542-023-05428-7

Wehking JD, Chew L, Kumar R. Droplet deformation and manipulation in an electrified microfluidic channel. Appl Phys Lett. 2013; 103(5): 5. https://doi.org/10.1063/1.4817008

Ding Y, Solvas XCI, deMello A. "V-junction": A novel structure for high-speed generation of bespoke droplet flows. Analyst. 2015; 140(2): 414-21. https://doi.org/10.1039/c4an01730g

Rhee M, Liu P, Meagher RJ, Light YK, Singh AK. Versatile on-demand droplet generation for controlled encapsulation. Biomicrofluidics. 2014; 8(3): 12. https://doi.org/10.1063/1.4874715

Han WB, Chen XY. Effect of geometry configuration on the merged droplet formation in a double T-junction. Microgravity Sci Technol. 2019; 31(6): 855-64. https://doi.org/10.1007/s12217-019-09720-y

Zhu P, Wang L. Passive and active droplet generation with microfluidics: a review. Lab Chip. 2017; 17(1): 34-75. https://doi.org/10.1039/c6lc01018k

Lin R, Fisher JS, Simon MG, Lee AP. Novel on-demand droplet generation for selective fluid sample extraction. Biomicrofluidics. 2012; 6(2): 024122. https://doi.org/10.1063/1.3699972

Su W, Han B, Yeboah S, Du D, Wang L. Fabrication of monodisperse droplets and microcapsules using microfluidic chips: A review of methodologies and applications. Rev Chem Eng. 2024; 40(3): 401-34. https://doi.org/10.1515/revce-2022-0060

Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA. Monodisperse double emulsions generated from a microcapillary device. Science. 2005; 308(5721): 537-41. https://doi.org/10.1126/science.1109164

Shao T, Feng XL, Jin Y, Cheng Y. Controlled production of double emulsions in dual-coaxial capillaries device for millimeter-scale hollow polymer spheres. Chem Eng Sci. 2013; 104: 55-63. https://doi.org/10.1016/j.ces.2013.09.001

Wang J, Zhang Y. Generation of styrene droplets in a coaxial flow device. J Flow Chem. 2025; 15: 89-98. https://doi.org/10.1007/s41981-025-00356-1

Zhang C, Kou Y, Xiao L, Yang Y, Hu Y, Zhao F, et al. Synthesis of boron-based high-energy composite microspheres via the co-flow microchannel method. Chem Eng J. 2024; 497: 154380. https://doi.org/10.1016/j.cej.2024.154380

Deng C, Wang H, Huang W, Cheng S. Numerical and experimental study of oil-in-water (O/W) droplet formation in a co-flowing capillary device. Colloids Surf A Physicochem Eng Asp. 2017; 533: 1-8. https://doi.org/10.1016/j.colsurfa.2017.05.041

Jiang T, Wu H, Liu S, Yan H, Jiang H. Effective colloidal emulsion droplet regulation in flow-focusing glass capillary microfluidic device via collection tube variation. RSC Adv. 2024; 14(5): 3250-60. https://doi.org/10.1039/D3RA08561A

Jung S-H, Bulut S, Guerzoni LB, Günther D, Braun S, De Laporte L, et al. Fabrication of pH-degradable supramacromolecular microgels with tunable size and shape via droplet-based microfluidics. J Colloid Interface Sci. 2022; 617: 409-21. https://doi.org/10.1016/j.jcis.2022.02.065

Roshan U, Dai Y, Yadav AS, Hettiarachchi S, Mudugamuwa A, Zhang J, et al. Flexible droplet microfluidic devices for tuneable droplet generation. Sens Actuators B Chem. 2025; 422: 136617. https://doi.org/10.1016/j.snb.2024.136617

Dreyfus R, Tabeling P, Willaime H. Ordered and disordered patterns in two-phase flows in microchannels. Phys Rev Lett. 2003; 90(14): 144505. https://doi.org/10.1103/PhysRevLett.90.144505

Anna SL, Bontoux N, Stone HA. Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett. 2003; 82(3): 364-6. https://doi.org/10.1063/1.1537519

Takeuchi S, Garstecki P, Weibel DB, Whitesides GM. An axisymmetric flow-focusing microfluidic device. Adv Mater. 2005; 17(8): 1067-70. https://doi.org/10.1002/adma.200401738

Castro-Hernández E, Kok MP, Versluis M, Rivas DF. Study of the geometry in a 3D flow-focusing device. Microfluid Nanofluid. 2016; 20(2): 26. https://doi.org/10.1007/s10404-016-1708-3

Wörner M. Numerical modeling of multiphase flows in microfluidics and micro process engineering: A review of methods and applications. Microfluid Nanofluid. 2012; 12(6): 841-86. https://doi.org/10.1007/s10404-012-0940-8

Sontti SG, Atta A. Numerical insights on controlled droplet formation in a microfluidic flow-focusing device. Ind Eng Chem Res. 2019; 59(9): 3702-16. https://doi.org/10.1021/acs.iecr.9b02137

Samla G, Gan KB, Then S-M. Modeling microfluidic DNA extraction using superparamagnetic bead particles in COMSOL Multiphysics simulation. Microsyst Technol. 2017; 23(10): 1-9. https://doi.org/10.1007/s00542-016-3170-2

Bryzgunov P, Osipov S, Komarov I, Rogalev A, Rogalev N. Research and development of criterial correlations for the optimal grid element size used for RANS flow simulation in single and compound channels. Inventions. 2022; 8(1): 4. https://doi.org/10.3390/inventions8010004

COMSOL Multiphysics®. Introduction to COMSOL Multiphysics®. Version 9.0. Burlington (MA): COMSOL Inc.; 2018.

Van der Graaf S, Nisisako T, Schroën C, Van Der Sman R, Boom R. Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel. Langmuir. 2006; 22(9): 4144-52. https://doi.org/10.1021/la052682f

Bashir S, Rees JM, Zimmerman WB. Simulations of microfluidic droplet formation using the two-phase level set method. Chem Eng Sci. 2011; 66(20): 4733-41. https://doi.org/10.1016/j.ces.2011.06.034

Li H, Li J, Qiao D, Wang X, Zhao D, Yan J, et al. Mixing in a co-flow-focusing structured droplet-based micromixer. Chem Eng Sci. 2024; 288:119854. https://doi.org/10.1016/j.ces.2024.119854

Li X, He L, He Y, Gu H, Liu M. Numerical study of droplet formation in the ordinary and modified T-junctions. Phys Fluids. 2019; 31(8): 082105. https://doi.org/10.1063/1.5107425

Nguyen MD, Lai TK, Ngo IL. An analytical study of micro-droplet generation in microfluidic double T-junction devices under effects of channel depth ratio using VOF method. Theor Comput Fluid Dyn. 2025; 39(1): 6. https://doi.org/10.1007/s00162-024-00720-2

Mardani F, Falahatian S, Taghipoor M. Mapping flow-focusing microfluidic droplet formation to determine high-throughput droplet generation configurations. Results Eng. 2023; 18:101125. https://doi.org/10.1016/j.rineng.2023.101125

Bi C, Su W, Du D, Darkwa J, Wang L, Chen J, et al. Control of monodisperse droplet size in microfluidics: A combined experimental and numerical investigation. Phys Fluids. 2025; 37(9): 092021. https://doi.org/10.1063/5.0283746

Nekouei M, Vanapalli SA. Volume-of-fluid simulations in microfluidic T-junction devices: Influence of viscosity ratio on droplet size. Phys Fluids. 2017; 29(3): 032007. https://doi.org/10.1063/1.4978801

Rajesh V, Buwa VV. Volume-of-fluid simulations of gas–liquid–liquid flows in minichannels. Chem Eng J. 2018; 345: 688-705. https://doi.org/10.1016/j.cej.2018.01.050

Jammula M, Sontti SG. High-throughput controlled droplet generation through a flow-focusing microchannel in shear-thinning fluids. Phys Fluids. 2025; 37(7): 072021. https://doi.org/10.1063/5.0272678

Sun H, Xie W, Mo J, Huang Y, Dong H. Deep learning with microfluidics for on-chip droplet generation, control, and analysis. Front Bioeng Biotechnol. 2023; 11: 1208648. https://doi.org/10.3389/fbioe.2023.1208648

Ares de Parga-Regalado AM, Hashemi AR, Ryzhakov PB. Machine learning-driven prediction of accompanying droplet structures based on primary droplet shape. Phys Fluids. 2025; 37(4): 042019. https://doi.org/10.1063/5.0268853

Park J, Kim YW, Jeon HJ. Machine learning-driven innovations in microfluidics. Biosensors. 2024; 14(12): 613. https://doi.org/10.3390/bios14120613

Solanki S, Lee S, Jebakumar A, Lum J, Hamidi-Haines M, Denison C, et al. Machine learning for predicting microfluidic droplet generation properties. Comput Fluids. 2022; 247: 105651. https://doi.org/10.1016/j.compfluid.2022.105651

Wang JX, Qian J, Wang H, Sun M, Wu L, Zhong M, et al. Dual-directional small-sampling deep-learning modelling on co-flowing microfluidic droplet generation. Chem Eng J. 2024; 485: 149467. https://doi.org/10.1016/j.cej.2024.149467

Chagot L, Quilodran-Casas C, Kalli M, Kovalchuk NM, Simmons MJH, Matar OK, et al. Surfactant-laden droplet size prediction in a flow-focusing microchannel: A data-driven approach. Lab Chip. 2022; 22(20): 3848-59. https://doi.org/10.1039/D2LC00416J

Talebjedi B, Abouei Mehrizi A, Talebjedi B, Mohseni SS, Tasnim N, Hoorfar M. Machine learning-aided microdroplets breakup characteristic prediction in flow-focusing microdevices by incorporating variations of cross-flow tilt angles. Langmuir. 2022; 38(34): 10465-77. https://doi.org/10.1021/acs.langmuir.2c01255

Liu M, Hu H, Cui Y, Song J, Ma L, Yuan Z, et al. Modeling and analysis of droplet generation in microchannels using interpretable machine learning methods. Chem Eng J. 2025; 511: 161972. https://doi.org/10.1016/j.cej.2025.161972

Eslami F, Kamali R. Developing machine learning models with metaheuristic algorithms for droplet size prediction in a microfluidic microchannel. Swarm Evol Comput. 2024; 87: 101583. https://doi.org/10.1016/j.swevo.2024.101583

Zhang Z, Wang K, Xu C, Zhang Y, Wu W, Lu C, et al. Ultrasound enhancing the mass transfer of droplet microreactor for the synthesis of AgInS₂ nanocrystals. Chem Eng J. 2022; 435: 134948. https://doi.org/10.1016/j.cej.2022.134948

Han B. Preparation and characterization of monodisperse microcapsules based on microfluidics (PhD thesis). Qilu University of Technology; 2024. http://10.27278/d.cnki.gsdqc.2024.000549.

Liu X. Hydrodynamic mechanism and applications of droplet microfluidic emulsification (PhD thesis). Yangzhou University; 2023. http://10.27441/d.cnki.gyzdu.2023.001318.

Kwak B, Lee Y, Lee J, Lee S, Lim J. Mass fabrication of uniform sized 3D tumor spheroid using high-throughput microfluidic system. J Control Release. 2018; 275: 201-7. https://doi.org/10.1016/j.jconrel.2018.02.029

Jing T, Ramji R, Warkiani ME, Han J, Lim C, Chen C. Jetting microfluidics with size-sorting capability for single-cell protease detection. Biosens Bioelectron. 2015; 66: 19-23. https://doi.org/10.1016/j.bios.2014.11.001

Lin Z, Zou Z, Pu Z, Wu M, Zhang Y. Application of microfluidic technologies on COVID-19 diagnosis and drug discovery. Acta Pharm Sin B. 2023; 13(7): 2877-96. https://doi.org/10.1016/j.apsb.2023.02.014

Wang T, Zhou S, Liu X, Zeng J, He X, Yu Z, et al. Intelligent optoelectrowetting digital microfluidic system for real-time selective parallel manipulation of biological droplet arrays. Lab Chip. 2025; 25(6): 1416–28. https://doi.org/10.1039/D4LC00804A

Wang YL, Wang JY. Mixed hydrogel bead-based tumor spheroid formation and anticancer drug testing. Analyst. 2014; 139(10): 2449-58. https://doi.org/10.1039/C4AN00015C

Sun Q, Tan SH, Chen QS, Ran R, Hui Y, Chen D, et al. Microfluidic formation of coculture tumor spheroids with stromal cells as a novel 3D tumor model for drug testing. ACS Biomater Sci Eng. 2018; 4(12): 4425-33. https://doi.org/10.1021/acsbiomaterials.8b00904

Wang R, Guo K, Zhang W, He Y, Yang K, Chen Q, et al. Poly-γ-glutamic acid microgel-encapsulated probiotics with gastric acid resistance and smart inflammatory factor targeted delivery performance to ameliorate colitis. Adv Funct Mater. 2022; 32(26): 2113034. https://doi.org/10.1002/adfm.202113034

Cerdá SL, Fontana F, Wang S, Correia A, Molinaro G, Tello RP, et al. Development of siRNA and budesonide dual-loaded hybrid lipid-polymer nanoparticles by microfluidics technology as a platform for dual drug delivery to macrophages: An in vitro mechanistic study. Adv Ther. 2023; 6(8): 2300048. https://doi.org/10.1002/adtp.202300048

Abdi Majareh M, Davachi SM, Tavakoli Moghaddam Y, Khanmohammadi M. Sustained release of dexamethasone from polyvinyl alcohol microparticle produced via coaxial microfluidic system. BMC Res Notes. 2023; 16(1): 268. https://doi.org/10.1186/s13104-023-06544-3

Sun Z, Yang C, Eggersdorfer M, Cui J, Li Y, Hai M, et al. A general strategy for one-step fabrication of biocompatible microcapsules with controlled active release. Chin Chem Lett. 2020; 31(1): 249-52. https://doi.org/10.1016/j.cclet.2019.04.040

Sarkar A, Jones ZR, Parashar M, Druga E, Akkiraju A, Conti S, et al. High-precision chemical quantum sensing in flowing monodisperse microdroplets. Sci Adv. 2024; 10(50): eadp4033. https://doi.org/10.1126/sciadv.adp4033

Bringer MR, Gerdts CJ, Song H, Tice JD, Ismagilov RF. Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Philos Trans R Soc A Math Phys Eng Sci. 2004; 362(1818): 1087-104. https://doi.org/10.1098/rsta.2003.1364

van der Loh M, Schiffmann M, Polack M, Wink K, Belder D. Coupling of droplet-on-demand microfluidics with ESI/MS to study single-cell catalysis. RSC Adv. 2024; 14(35): 25337-46. https://doi.org/10.1039/D4RA04835K

Kikutani Y, Horiuchi T, Uchiyama K, Hisamoto H, Tokeshi M, Kitamori T. Glass microchip with three-dimensional microchannel network for 2×2 parallel synthesis. Lab Chip. 2002; 2(4): 188-92. https://doi.org/10.1039/B208382P

Chan EM, Alivisatos AP, Mathies RA. High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. J Am Chem Soc. 2005; 127(40): 13854-61. https://doi.org/10.1021/ja051381p

Chen S-K, Ju X-J, Wei J, Wang W, Chu L-Y. Controllable preparation of monodisperse chitosan microspheres based on microfluidic technology. J Chem Educ. 2023; 100(9): 3526-32. https://doi.org/10.1021/acs.jchemed.2c00901

Kanai T, Fujisaki T, Yokoyama Y. A microfluidic technique for the continuous synthesis of monodisperse silica supraparticles. Micro and Nanosystems. 2025; 13(1): 101-6. https://doi.org/10.1080/21870764.2025.2463161

Li Y, Zhou W, Wang X, Cheng J, Wang Y, Zhang S. Formation mechanism of the micro droplet based on the flow-focusing structure. Micronanoelectronic Technol. 2015; 52(9): 576-80. https://doi.org/10.13250/j.cnki.wndz.2015.09.006

Deng L, Ju X, Zhang W, Xie R, Wang W, Liu Z, et al. Controllable preparation of radioactive chitosan embolic microspheres by microfluidic method. CIESC J. 2023; 74(4): 1781-94.

Guo JH. Preparation and performance evaluation of intestinal-targeted probiotic microcapsules based on microdroplets (PhD thesis). Northwest A&F University; 2024. http://10.27409/d.cnki.gxbnu.2024.000505.

Yu J, Guo J, Guo B, Zhang D, Zhao Y. Liquid metal-integrated ultra-elastic conductive microfibers from microfluidics for wearable electronics. Sci Bull. 2020; 65(20): 1752–9. https://doi.org/10.1016/j.scib.2020.06.002

Lashkaripour A, McIntyre DP, Calhoun SG, Krauth K, Densmore DM, Fordyce PM. Design automation of microfluidic single and double emulsion droplets with machine learning. Nat Commun. 2024; 15(1): 83. https://doi.org/10.1038/s41467-023-44068-3

Li J, Li W, Wu B, Bu W, Li M, Ou J, et al. An injection-mold-based method with a nested device for microdroplet generation by centrifugation. Processes. 2024; 12(3): 483. https://doi.org/10.3390/pr12030483

Chen L, Du Y, Rao S, Shi Q, Cui Y, Zhou L, et al. Accurate and microfluidics-free digital nucleic acid quantification with crescent microbeads-templated emulsions. ACS Sens. 2025; 19(9): 1-10. https://doi.org/10.1021/acssensors.5c01158

Cong H, Zhang N. Perspectives in translating microfluidic devices from laboratory prototyping into scale-up production. Biomicrofluidics. 2022; 16(2): 021301. https://doi.org/10.1063/5.0079045

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Chenxu Bi, Gan Wang, Zhenling Fu, Weiguang Su

Downloads

Download data is not yet available.