Comparative Study on Interphase Force Model of Gas-Liquid Two-Phase Bubbly Flow Based on OpenFOAM

Authors

  • Chang Liu Chongqing University, Ministry of Education, Chongqing, 400044, China
  • Haochuang Wu Chongqing Normal University, Chongqing, 400030, China
  • Wei Lu China Nuclear Power Research and Design Institute, Chengdu, 610041, China
  • Deqi Chen Chongqing University, Ministry of Education, Chongqing, 400044, China
  • Junjie Pan China Nuclear Power Research and Design Institute, Chengdu, 610041, China
  • Zhenzhong Li Chongqing University), Ministry of Education, Chongqing, 400044, China
  • Jintao Feng China Nuclear Power Research and Design Institute, Chengdu, 610041, China

DOI:

https://doi.org/10.15377/2409-5826.2022.09.3

Keywords:

DEDALE, Bubbly flow, OpenFOAM, Two-fluid model, Interphase force model

Abstract

It is essential to choose an appropriate interphase force model when studying gas-liquid two-phase bubbly flow by numerical calculation. Because of the complexity of gas-liquid interaction, researchers have developed many models, while there is still a lack of corresponding guidelines when selecting the combination of interphase force models. In the present study, taking the DEDALE experimental condition as the research object, the parameter distribution characteristics of void fraction and gas-liquid two-phase velocity under the experimental condition are simulated, and the calculation results of different interphase force models are analyzed and compared with the experimental results. The effects of different interphase force models on the local parameter distribution characteristics of the two phases are analyzed and discussed, and the optimal model combination under this experimental condition is obtained.

Downloads

Download data is not yet available.

Author Biographies

  • Chang Liu, Chongqing University, Ministry of Education, Chongqing, 400044, China

    Key Laboratory of Low-grade Energy Utilization Technologies and Systems

  • Haochuang Wu, Chongqing Normal University, Chongqing, 400030, China

    College of Primary Education

  • Wei Lu, China Nuclear Power Research and Design Institute, Chengdu, 610041, China

    Key Laboratory of Nuclear Reactor System Design Technology

  • Deqi Chen, Chongqing University, Ministry of Education, Chongqing, 400044, China

    Key Laboratory of Low-grade Energy Utilization Technologies and Systems

  • Junjie Pan, China Nuclear Power Research and Design Institute, Chengdu, 610041, China

    Key Laboratory of Nuclear Reactor System Design Technology

  • Zhenzhong Li, Chongqing University), Ministry of Education, Chongqing, 400044, China

    Key Laboratory of Low-grade Energy Utilization Technologies and Systems

  • Jintao Feng, China Nuclear Power Research and Design Institute, Chengdu, 610041, China

    Key Laboratory of Nuclear Reactor System Design Technology

References

Tomiyama A. Struggle With Computational Bubble Dynamics[J]. Multiphase Science Technology,1998, 10(4): 369-405. https://doi.org/10.1615/MultScienTechn.v10.i4.40

Lucas D, Krepper E, Prasser H M. Use of models for lift, wall and turbulent dispersion forces acting on bubbles for poly-disperse flows[J].Chemical Engineering Science,2007, 62(15): 4146-4157. https://doi.org/10.1016/j.ces.2007.04.035 DOI: https://doi.org/10.1016/j.ces.2007.04.035

Lucas D, Krepper E, Prasser HM. Development of co-current air-water flow in a vertical pipe[J]. International Journal of Multiphase Flow,2005, 31(12): 1304-1328. https://doi.org/10.1016/j.ijmultiphaseflow.2005.07.004 DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2005.07.004

Horst-Michael, Prasser, And, et al. Evolution of the structure of a gas-liquid two-phase flow in a large vertical pipe[J]. Nuclear Engineering Design,2007, 237: 1848-1861. https://doi.org/10.1016/j.nucengdes.2007.02.018 DOI: https://doi.org/10.1016/j.nucengdes.2007.02.018

Burns A D, Frank, T, Hamill, I, Shi, J.-M. The Favre averaged model for turbulence dispersion in Eulerian multi-phase flows[C].5 Th Int Conf Multiphase Flow, Icmf,2004: ICMF 1-17.

Yamoah S, Martínez-Cuenca, R, Monrós, G, Chiva, S, Macián-Juan, R.Numerical investigation of models for drag, lift, wall lubrication and turbulent dispersion forces for the simulation of gas-liquid two-phase flow[J]. Chemical Engineering Research and Design,2015, 98: 17-35. https://doi.org/10.1016/j.cherd.2015.04.007 DOI: https://doi.org/10.1016/j.cherd.2015.04.007

Monrós-Andreu G, Chiva S, Martínez-Cuenca R, et al.Water temperature effect on upward air-water flow in a vertical pipe: Local measurements database using four-sensor conductivity probes and LDA[J].2013. https://doi.org/10.1051/epjconf/20134501105 DOI: https://doi.org/10.1051/epjconf/20134501105

Grace J, Th N. Shapes and velocities of single drops and bubbles moving freely through immiscible liquids[J]. Chemical Engineering Research and Design,1976, 54: 167-173.

Antal SP, Jr R, Flaherty JE. Analysis of phase distribution in fully developed laminar bubbly two-phase flow[J].1991, 17(5): 635-652. https://doi.org/10.1016/0301-9322(91)90029-3 DOI: https://doi.org/10.1016/0301-9322(91)90029-3

Wang Q, Wei Y J I J O H, Transfer M. Computation and validation of the interphase force models for bubbly flow[J].2016, 98: 799-813. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.064 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.064

Hibiki T, Ishii M, Xiao Z J I J O H, et al. Axial interfacial area transport of vertical bubbly flows[J].2001, 44(10): 1869-1888. https://doi.org/10.1016/S0017-9310(00)00232-5 DOI: https://doi.org/10.1016/S0017-9310(00)00232-5

Fu X. Interfacial area measurement and transport modeling in air-water two-phase flow[D]. Purdue University,2001.

Ishii M, Zuber N.Drag coefficient and relative velocity in bubbly, droplet or particulate flows[J].AIChE Journal,1979, 25(5): 843-855. https://doi.org/10.1002/aic.690250513

Hosokawa S, Tomiyama A, Misaki S, et al. Lateral migration of single bubbles due to the presence of wall[C].Fluids Engineering Division Summer Meeting,2002: 855-860. https://doi.org/10.1115/FEDSM2002-31148 DOI: https://doi.org/10.1115/FEDSM2002-31148

Saffman P G J J O F M.The Lift on a Small Sphere in a Slow Shear[J].1965, 22(2): 385-400. https://doi.org/10.1017/S0022112065000824

Mei R, Klausner J F J I J O H, Flow F. Shear lift force on spherical bubbles[J].1994, 15(1): 62-65. https://doi.org/10.1016/0142-727X(94)90031-0

Moraga F J, Bonetto FJ, Lahey R T J I J O M F. Lateral forces on spheres in turbulent uniform shear flow[J].1999, 25(6-7): 1321-1372. https://doi.org/10.1016/S0301-9322(99)00045-2 DOI: https://doi.org/10.1016/S0301-9322(99)00045-2

Liao Y, Ma T, Liu L, et al.Eulerian modelling of turbulent bubbly flow based on a baseline closure concept[J].2018, 337(OCT.): 450-459. https://doi.org/10.1016/j.nucengdes.2018.07.021 DOI: https://doi.org/10.1016/j.nucengdes.2018.07.021

Michta E. Modeling of subcooled nucleate boiling with OpenFOAM[J]. 2011.

Ishii, M. and Zuber, N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows[J].1987, 25: 843-855. https://doi.org/10.1002/aic.690250513 DOI: https://doi.org/10.1002/aic.690250513

Tomiyama A. Struggle With Computational Bubble Dynamics[J]. Multiphase Science and Technology, 1998, 10(4):369-405. https://doi.org/10.1615/MultScienTechn.v10.i4.40 DOI: https://doi.org/10.1615/MultScienTechn.v10.i4.40

Simonnet M, Gentric C, Olmos E, et al. Experimental determination of the drag coefficient in a swarm of bubbles[J]. Chemical Engineering Science, 2007, 62(3):858-866. https://doi.org/10.1016/j.ces.2006.10.012 DOI: https://doi.org/10.1016/j.ces.2006.10.012

Saffman PG. The Lift on a Small Sphere in a Slow Shear[J]. Journal of Fluid Mechanics, 1965, 22(2):385-400. https://doi.org/10.1017/S0022112065000824 DOI: https://doi.org/10.1017/S0022112065000824

Mei R, Klausner J F. Shear lift force on spherical bubbles[J]. International Journal of Heat and Fluid Flow, 1994, 15(1):62-65. https://doi.org/10.1016/0142-727X(94)90031-0 DOI: https://doi.org/10.1016/0142-727X(94)90031-0

Legendre D, Magnaudet J. The lift force on a spherical bubble in a viscous linear shear flow[J]. Journal of Fluid Mechanics, 1998, 368:81-126. https://doi.org/10.1017/S0022112098001621 DOI: https://doi.org/10.1017/S0022112098001621

Frank T, Zwart P J, Krepper E, et al. Validation of CFD models for mono- and polydisperse air-water two-phase flows in pipes[J]. Nuclear Engineering & Design, 2008, 238(3):647-659. https://doi.org/10.1016/j.nucengdes.2007.02.056 DOI: https://doi.org/10.1016/j.nucengdes.2007.02.056

Bertodano M, Lahey R T, Jones O C. Turbulent bubbly two-phase flow data in a triangular duct[J]. Nuclear Engineering and Design, 1994, 146(1-3):43-52. https://doi.org/10.1016/0029-5493(94)90319-0 DOI: https://doi.org/10.1016/0029-5493(94)90319-0

Burns A D, Frank T, Hamill I, et al. The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows[C]// 5th International Conference on Multiphase Flow, ICMF'04. 2004.

Sekoguchi Y S. Liquid velocity distribution in two-phase bubble flow[J]. International Journal of Multiphase Flow, 1975.

Chen Q, Podila K, Rao Y F, et al. Assessment of CFD for unheated gas-liquid flows with high void fraction[J]. Nuclear Engineering and Design, 2018, 341(JAN.):346-359. https://doi.org/10.1016/j.nucengdes.2018.11.016 DOI: https://doi.org/10.1016/j.nucengdes.2018.11.016

Xia W, Sun X. Three-dimensional simulations of air-water bubbly flows[J]. Int.j.multiphase Flow, 2010, 36(11-12):882-890. https://doi.org/10.1016/j.ijmultiphaseflow.2010.08.004 DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2010.08.004

Jin D, Xiong J, X Cheng. Investigation on interphase force modeling for vertical and inclined upward adiabatic bubbly flow[J]. Nuclear Engineering and Design, 2019, 350(AUG.):43-57. https://doi.org/10.1016/j.nucengdes.2019.05.005 DOI: https://doi.org/10.1016/j.nucengdes.2019.05.005

Parekh J, Rzehak R. Euler-Euler multiphase CFD-simulation with full Reynolds stress model and anisotropic bubble-induced turbulence[J]. International Journal of Multiphase Flow, 2017:S0301932217304275. https://doi.org/10.1016/j.ijmultiphaseflow.2017.10.012 DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2017.10.012

Akbar M, Hayashi K, Lucas D, et al. Effects of inlet condition on flow structure of bubbly flow in a rectangular column[J]. Chemical Engineering Science, 2013, 104(50):166-176. https://doi.org/10.1016/j.ces.2013.09.019 DOI: https://doi.org/10.1016/j.ces.2013.09.019

Rzehak R, Krepper E. CFD modeling of bubble-induced turbulence[J]. International Journal of Multiphase Flow, 2013, 55(Complete):138-155. https://doi.org/10.1016/j.ijmultiphaseflow.2013.04.007 DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2013.04.007

A O M, B M G, J. Laviéville b, et al. Comparison and uncertainty quantification of two-fluid models for bubbly flows with NEPTUNE_CFD and STAR-CCM+[J]. Nuclear Engineering and Design, 2018, 337:1-16. https://doi.org/10.1016/j.nucengdes.2018.05.028 DOI: https://doi.org/10.1016/j.nucengdes.2018.05.028

Downloads

Published

2022-06-07

Issue

Section

Articles

How to Cite

1.
Comparative Study on Interphase Force Model of Gas-Liquid Two-Phase Bubbly Flow Based on OpenFOAM. J. Adv. Therm. Sci. Res. [Internet]. 2022 Jun. 7 [cited 2026 Feb. 14];9:24-37. Available from: https://www.avantipublishers.com/index.php/jatsr/article/view/1192

Similar Articles

1-10 of 51

You may also start an advanced similarity search for this article.