Abstract
It is essential to choose an appropriate interphase force model when studying gas-liquid two-phase bubbly flow by numerical calculation. Because of the complexity of gas-liquid interaction, researchers have developed many models, while there is still a lack of corresponding guidelines when selecting the combination of interphase force models. In the present study, taking the DEDALE experimental condition as the research object, the parameter distribution characteristics of void fraction and gas-liquid two-phase velocity under the experimental condition are simulated, and the calculation results of different interphase force models are analyzed and compared with the experimental results. The effects of different interphase force models on the local parameter distribution characteristics of the two phases are analyzed and discussed, and the optimal model combination under this experimental condition is obtained.
References
Tomiyama A. Struggle With Computational Bubble Dynamics[J]. Multiphase Science Technology,1998, 10(4): 369-405. https://doi.org/10.1615/MultScienTechn.v10.i4.40
Lucas D, Krepper E, Prasser H M. Use of models for lift, wall and turbulent dispersion forces acting on bubbles for poly-disperse flows[J].Chemical Engineering Science,2007, 62(15): 4146-4157. https://doi.org/10.1016/j.ces.2007.04.035
Lucas D, Krepper E, Prasser HM. Development of co-current air-water flow in a vertical pipe[J]. International Journal of Multiphase Flow,2005, 31(12): 1304-1328. https://doi.org/10.1016/j.ijmultiphaseflow.2005.07.004
Horst-Michael, Prasser, And, et al. Evolution of the structure of a gas-liquid two-phase flow in a large vertical pipe[J]. Nuclear Engineering Design,2007, 237: 1848-1861. https://doi.org/10.1016/j.nucengdes.2007.02.018
Burns A D, Frank, T, Hamill, I, Shi, J.-M. The Favre averaged model for turbulence dispersion in Eulerian multi-phase flows[C].5 Th Int Conf Multiphase Flow, Icmf,2004: ICMF 1-17.
Yamoah S, Martínez-Cuenca, R, Monrós, G, Chiva, S, Macián-Juan, R.Numerical investigation of models for drag, lift, wall lubrication and turbulent dispersion forces for the simulation of gas-liquid two-phase flow[J]. Chemical Engineering Research and Design,2015, 98: 17-35. https://doi.org/10.1016/j.cherd.2015.04.007
Monrós-Andreu G, Chiva S, Martínez-Cuenca R, et al.Water temperature effect on upward air-water flow in a vertical pipe: Local measurements database using four-sensor conductivity probes and LDA[J].2013. https://doi.org/10.1051/epjconf/20134501105
Grace J, Th N. Shapes and velocities of single drops and bubbles moving freely through immiscible liquids[J]. Chemical Engineering Research and Design,1976, 54: 167-173.
Antal SP, Jr R, Flaherty JE. Analysis of phase distribution in fully developed laminar bubbly two-phase flow[J].1991, 17(5): 635-652. https://doi.org/10.1016/0301-9322(91)90029-3
Wang Q, Wei Y J I J O H, Transfer M. Computation and validation of the interphase force models for bubbly flow[J].2016, 98: 799-813. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.064
Hibiki T, Ishii M, Xiao Z J I J O H, et al. Axial interfacial area transport of vertical bubbly flows[J].2001, 44(10): 1869-1888. https://doi.org/10.1016/S0017-9310(00)00232-5
Fu X. Interfacial area measurement and transport modeling in air-water two-phase flow[D]. Purdue University,2001.
Ishii M, Zuber N.Drag coefficient and relative velocity in bubbly, droplet or particulate flows[J].AIChE Journal,1979, 25(5): 843-855. https://doi.org/10.1002/aic.690250513
Hosokawa S, Tomiyama A, Misaki S, et al. Lateral migration of single bubbles due to the presence of wall[C].Fluids Engineering Division Summer Meeting,2002: 855-860. https://doi.org/10.1115/FEDSM2002-31148
Saffman P G J J O F M.The Lift on a Small Sphere in a Slow Shear[J].1965, 22(2): 385-400. https://doi.org/10.1017/S0022112065000824
Mei R, Klausner J F J I J O H, Flow F. Shear lift force on spherical bubbles[J].1994, 15(1): 62-65. https://doi.org/10.1016/0142-727X(94)90031-0
Moraga F J, Bonetto FJ, Lahey R T J I J O M F. Lateral forces on spheres in turbulent uniform shear flow[J].1999, 25(6-7): 1321-1372. https://doi.org/10.1016/S0301-9322(99)00045-2
Liao Y, Ma T, Liu L, et al.Eulerian modelling of turbulent bubbly flow based on a baseline closure concept[J].2018, 337(OCT.): 450-459. https://doi.org/10.1016/j.nucengdes.2018.07.021
Michta E. Modeling of subcooled nucleate boiling with OpenFOAM[J]. 2011.
Ishii, M. and Zuber, N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows[J].1987, 25: 843-855. https://doi.org/10.1002/aic.690250513
Tomiyama A. Struggle With Computational Bubble Dynamics[J]. Multiphase Science and Technology, 1998, 10(4):369-405. https://doi.org/10.1615/MultScienTechn.v10.i4.40
Simonnet M, Gentric C, Olmos E, et al. Experimental determination of the drag coefficient in a swarm of bubbles[J]. Chemical Engineering Science, 2007, 62(3):858-866. https://doi.org/10.1016/j.ces.2006.10.012
Saffman PG. The Lift on a Small Sphere in a Slow Shear[J]. Journal of Fluid Mechanics, 1965, 22(2):385-400. https://doi.org/10.1017/S0022112065000824
Mei R, Klausner J F. Shear lift force on spherical bubbles[J]. International Journal of Heat and Fluid Flow, 1994, 15(1):62-65. https://doi.org/10.1016/0142-727X(94)90031-0
Legendre D, Magnaudet J. The lift force on a spherical bubble in a viscous linear shear flow[J]. Journal of Fluid Mechanics, 1998, 368:81-126. https://doi.org/10.1017/S0022112098001621
Frank T, Zwart P J, Krepper E, et al. Validation of CFD models for mono- and polydisperse air-water two-phase flows in pipes[J]. Nuclear Engineering & Design, 2008, 238(3):647-659. https://doi.org/10.1016/j.nucengdes.2007.02.056
Bertodano M, Lahey R T, Jones O C. Turbulent bubbly two-phase flow data in a triangular duct[J]. Nuclear Engineering and Design, 1994, 146(1-3):43-52. https://doi.org/10.1016/0029-5493(94)90319-0
Burns A D, Frank T, Hamill I, et al. The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows[C]// 5th International Conference on Multiphase Flow, ICMF'04. 2004.
Sekoguchi Y S. Liquid velocity distribution in two-phase bubble flow[J]. International Journal of Multiphase Flow, 1975.
Chen Q, Podila K, Rao Y F, et al. Assessment of CFD for unheated gas-liquid flows with high void fraction[J]. Nuclear Engineering and Design, 2018, 341(JAN.):346-359. https://doi.org/10.1016/j.nucengdes.2018.11.016
Xia W, Sun X. Three-dimensional simulations of air-water bubbly flows[J]. Int.j.multiphase Flow, 2010, 36(11-12):882-890. https://doi.org/10.1016/j.ijmultiphaseflow.2010.08.004
Jin D, Xiong J, X Cheng. Investigation on interphase force modeling for vertical and inclined upward adiabatic bubbly flow[J]. Nuclear Engineering and Design, 2019, 350(AUG.):43-57. https://doi.org/10.1016/j.nucengdes.2019.05.005
Parekh J, Rzehak R. Euler-Euler multiphase CFD-simulation with full Reynolds stress model and anisotropic bubble-induced turbulence[J]. International Journal of Multiphase Flow, 2017:S0301932217304275. https://doi.org/10.1016/j.ijmultiphaseflow.2017.10.012
Akbar M, Hayashi K, Lucas D, et al. Effects of inlet condition on flow structure of bubbly flow in a rectangular column[J]. Chemical Engineering Science, 2013, 104(50):166-176. https://doi.org/10.1016/j.ces.2013.09.019
Rzehak R, Krepper E. CFD modeling of bubble-induced turbulence[J]. International Journal of Multiphase Flow, 2013, 55(Complete):138-155. https://doi.org/10.1016/j.ijmultiphaseflow.2013.04.007
A O M, B M G, J. Laviéville b, et al. Comparison and uncertainty quantification of two-fluid models for bubbly flows with NEPTUNE_CFD and STAR-CCM+[J]. Nuclear Engineering and Design, 2018, 337:1-16. https://doi.org/10.1016/j.nucengdes.2018.05.028
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2022 Chang Liu, Haochuang Wu, Wei Lu, Deqi Chen, Junjie Pan, Zhenzhong Li, Jintao Feng