Finite Element Analysis of Creep Crack Initiation in Functionally Graded Materials with Crack Parallel to the Gradient

Authors

  • Huan Sheng Lai Sun Yat-sen University, Zhuhai 519082, China
  • Chunmei Bai Sun Yat-sen University, Zhuhai 519082, China
  • Kang Lin Liu Fuzhou University, Fujian 350116, China

DOI:

https://doi.org/10.15377/2409-9821.2019.06.3

Keywords:

FGM, creep damage, creep crack initiation, functionally graded material.level.

Abstract

 With the advances in material synthesis technologies, functionally graded materials (FGMs) are developed to use in high temperature structurals due to the excellent high temperature mechanical properties. To facilitate wide use of FGMs in high temperature structures, finite element method (FEM) was used in this paper to investigate effects of creep resistant properties gradients on creep crack initiation (CCI) in FGMs, with crack parallel to the gradient. Results indicated that when creep resistant properties increased in the crack growth direction, CCI was retarded by creep properties gradients. However, CCI was accelerated by creep properties gradients when creep resistant properties decreased in the crack growth direction. CCI position occurred in the two symmetric slanted planes of the initial crack, regardless of the gradient variation of creep resistant properties.

Downloads

Download data is not yet available.

Author Biographies

  • Huan Sheng Lai, Sun Yat-sen University, Zhuhai 519082, China
    Sino-French Institute of Nuclear Engineering and Technology
  • Chunmei Bai, Sun Yat-sen University, Zhuhai 519082, China
    School of Civil Engineering
  • Kang Lin Liu, Fuzhou University, Fujian 350116, China
    School of Chemical Engineering

References

D.K. Jha, T. Kant, R.K. Sing, A critical review of recent research on functionally graded plates, Compos. Struct. 96 (2013) 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001 DOI: https://doi.org/10.1016/j.compstruct.2012.09.001

J. Li, B.L. Zheng, Q. Yang, X.J. Hu, Analysis on timedependent behavior of laminated functionally graded beams with viscoelastic interlayer, Compos. Struct. 107 (2014) 30-35. https://doi.org/10.1016/j.compstruct.2013.07.047 DOI: https://doi.org/10.1016/j.compstruct.2013.07.047

Gottron J, Harries KA, Xu Q. Creep behavior of bamboo, Constr. Build Mater. 66 (2014): 79-88. https://doi.org/10.1016/j.conbuildmat.2014.05.024 DOI: https://doi.org/10.1016/j.conbuildmat.2014.05.024

S.B. Singh, S. Ray, Creep analysis in an isotropic FGM rotating disc of Al-Sic composite, J. Mater. Process. Tech. 143-144 (2003) 616-622. https://doi.org/10.1016/S0924-0136(03)00445-X DOI: https://doi.org/10.1016/S0924-0136(03)00445-X

V.K. Gupta, S.B. Singh, H.N. Chandrawat, S. Ray, Creep behavior of a rotating functionally graded composite disc operating under thermal gradient, Metall. Mater. Trans. A 35(4) (2004) 1381-1391. https://doi.org/10.1007/s11661-004-0313-3 DOI: https://doi.org/10.1007/s11661-004-0313-3

D. Deepak, V.K. Gupta, A.K. Dham, Creep modeling in functionally graded rotating disc of variable thickness, J. Mech. Sci. Technol. 24(11) (2010) 2221-2232. https://doi.org/10.1007/s12206-010-0817-2 DOI: https://doi.org/10.1007/s12206-010-0817-2

S.K. Mangal, N. Kapoor, T. Singh, Steady-state creep analysis of functionally graded rotating cylinder, Strain 49 (2013) 457-466. https://doi.org/10.1111/str.12052 DOI: https://doi.org/10.1111/str.12052

T. Singh, V.K. Gupta, Modeling steady state creep in functionally graded thick cylinder subjected internal pressure, J. Compos. Mater. 44(11) (2010) 1317-1333. https://doi.org/10.1177/0021998309353214 DOI: https://doi.org/10.1177/0021998309353214

Y.Y. Yang, Time-dependent stress analysis in functionally graded materials, Int. J. Solids Struct. 37 (2007) 7593-7608. https://doi.org/10.1016/S0020-7683(99)00310-8 DOI: https://doi.org/10.1016/S0020-7683(99)00310-8

L.H. You, H. Ou, Z.Y. Zheng, Creep deformations and stresses in thick-walled cylindrical vessels of functionally graded materials subjected to internal pressure, Compos. Struct. 78 (2007) 285-291. https://doi.org/10.1016/j.compstruct.2005.10.002 DOI: https://doi.org/10.1016/j.compstruct.2005.10.002

S.M.A. Aleayoub, A. Loghman, Creep stress redistribution analysis of thick-walled FGM spheres, J. Solid. Mech. 2(2) (2010) 115-128.

J.J. Chen, S.T. Tu, F.Z. Xuan, Z.D. Wang, Creep analysis for a functionally graded cylinder subjected to internal and external pressure, J. Strain. Anal. Eng. 42 (2007) 69-77. https://doi.org/10.1243/03093247JSA237 DOI: https://doi.org/10.1243/03093247JSA237

A. Loghman, S.A.M. Aleayoub, S.M. Hasani, Timedependent magnetothermoelastic creep Modeling of FGM spheres using method of successive elastic solution, Appl. Math. Model. 36 (2012) 836-845. https://doi.org/10.1016/j.apm.2011.07.038 DOI: https://doi.org/10.1016/j.apm.2011.07.038

M.D. Kashkoli, M.Z. Nejad, Time-dependent thermos-elastic creep analysis of thick-walled spherical pressure vessels made of functionally graded materials, J. Theor. App. Mechpol. 53(4) (2015) 1053-1065. https://doi.org/10.15632/jtam-pl.53.4.1053 DOI: https://doi.org/10.15632/jtam-pl.53.4.1053

H.L. Dai, H.J. Jiang, L. Yang, Time-dependent behaviors of a FGPM hollow sphere under the coupling of multi-fields, Solid State Sci. 14 (2012) 587-597. https://doi.org/10.1016/j.solidstatesciences.2012.02.011 DOI: https://doi.org/10.1016/j.solidstatesciences.2012.02.011

J.J. Chen, S.T. Tu, Creep fracture parameters of functionally graded coating, J. Chin. Inst. Eng. 27(6) (2004) 805-812. https://doi.org/10.1080/02533839.2004.9670931 DOI: https://doi.org/10.1080/02533839.2004.9670931

F.Z. Xuan, Z.F. Wang, S.T. Tu, Creep finite element simulation of multilayered system with interfacial cracks, Mater. Design. 30 (2009) 563-569. https://doi.org/10.1016/j.matdes.2008.05.067 DOI: https://doi.org/10.1016/j.matdes.2008.05.067

H.S. Lai, Estimation of Ct of functionally graded materials under small scale creep stage, Compos. Struct. 138 (2016) 352-360. https://doi.org/10.1016/j.compstruct.2015.11.070 DOI: https://doi.org/10.1016/j.compstruct.2015.11.070

H.S. Lai, K.B. Yoon, Estimation of C(t) and the creep crack tip stress field of functionally graded materials and verification via finite element analysis, Compos. Struct. 153 (2016) 728-737. https://doi.org/10.1016/j.compstruct.2016.07.004 DOI: https://doi.org/10.1016/j.compstruct.2016.07.004

S. Yu, W. Dong, F.M. Xu, M.B. Fu, Y. Tan, Effects of heat treatment on the creep crack growth behavior in Al/Al- 4wt%Cu functionally graded material, Adv. Mater. Res. 711 (2013) 81-86. https://doi.org/10.4028/www.scientific.net/AMR.711.81 DOI: https://doi.org/10.4028/www.scientific.net/AMR.711.81

P. Gu, M. Dao, R.J. Asaro, A simplified method for calculating the crack-tip field of functionally graded materials using the domain integral, J. Appl. Mech-T. ASME 68 (1999) 101-108. https://doi.org/10.1115/1.2789135 DOI: https://doi.org/10.1115/1.2789135

Z.H. Jin, N. Noda, Crack-tip singular fields in nonhomogeneous materials, J. Appl. Mech-T. ASME 61 (1994) 738-740. https://doi.org/10.1115/1.2901529 DOI: https://doi.org/10.1115/1.2901529

Z.H. Jin, R.C. Batra, Some basic fracture mechanics concepts in functionally graded materials, J. Mech. Phys. Solids 44(8) (1996) 1221-1235. https://doi.org/10.1016/0022-5096(96)00041-5 DOI: https://doi.org/10.1016/0022-5096(96)00041-5

P. Shanmugavel, G.B. Bhaskar, M. Chandrasekaran, An overview of fracture analysis in functionally graded materials, Eur. J. Sci. Res. 68(3) (2012) 412-439.

C.E. Rousseau, H.V. Tippur, Influence of elastic variations on crack initiation in functionally graded glass-filled epoxy, Eng. Fract. Mech. 69 (2002) 1679-1693. https://doi.org/10.1016/S0013-7944(02)00056-5 DOI: https://doi.org/10.1016/S0013-7944(02)00056-5

C. Comi, S. Mariani, Extended finite element simulation of quasi-brittle fracture in functionally graded materials, Comput. Method. Appl. M. 196 (2007) 4013-4026. https://doi.org/10.1016/j.cma.2007.02.014 DOI: https://doi.org/10.1016/j.cma.2007.02.014

M. Fulland, M. Steigemann, H.A. Richard, M. Specovius- Neugebauer, Development of stress intensities for crack in FGMs with orientation perpendicular and parallel to the gradation, Eng. Fract. Mech. 95 (2012) 37-44. https://doi.org/10.1016/j.engfracmech.2011.12.005 DOI: https://doi.org/10.1016/j.engfracmech.2011.12.005

M. Yatomi, K.M. Nikbin, N.P. O’Dowd, Creep crack growth prediction using a damage based approach, Int. J. Pres. Ves. Pip. 80 (2003) 573-583. https://doi.org/10.1016/S0308-0161(03)00110-8 DOI: https://doi.org/10.1016/S0308-0161(03)00110-8

A.C.F. Cocks, M.F. Ashby, Intergranular fracture during power-law creep under multiaxial stress, Metal. Sci. 14 (1980) 395-402. https://doi.org/10.1179/030634580790441187 DOI: https://doi.org/10.1179/030634580790441187

M. Yatomi, Factors affecting the failure of cracked components at elevated temperature [PhD thesis

L. Zhao, H. Jing, Y. Han, J. Xiu, L. Xu, Prediction of creep crack growth behavior in ASME P92 steel welded joint, Comp. Mater. Sci. 61 (2012) 185-193. https://doi.org/10.1016/j.commatsci.2012.04.028 DOI: https://doi.org/10.1016/j.commatsci.2012.04.028

Z.Q. Wang, T. Nakamura, Simulations of crack propagation in elastic-plastic graded materials, Mech. Mater. 36 (2004) 601-622. https://doi.org/10.1016/S0167-6636(03)00079-6 DOI: https://doi.org/10.1016/S0167-6636(03)00079-6

Z.Y. Zhang, G.H. Paulino, Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials, Int. J. Plasticity. 21 (2005) 1195-1254. https://doi.org/10.1016/j.ijplas.2004.06.009 DOI: https://doi.org/10.1016/j.ijplas.2004.06.009

C.S. Oh, N.H. Kin, Y.J. Kim, C. Davies, K. Nikbin, D. Dean, Creep failure simulations of 316H at 550 °C: Part I – A method and validation, Eng. Fract. Eech. 78 (2011) 2966-2977. https://doi.org/10.1016/j.engfracmech.2011.08.015 DOI: https://doi.org/10.1016/j.engfracmech.2011.08.015

N.H. Kim, C.S. Oh, Y.J. Kim, C. Davies, K. Nikbin, D. Dean, Creep failure simulations of 316H at 550 °C: Part II – Effects of specimen geometry and loading mode, Eng. Fract. Mech. 105 (2013) 169-81. https://doi.org/10.1016/j.engfracmech.2013.04.001 DOI: https://doi.org/10.1016/j.engfracmech.2013.04.001

M. Tabuchi, H. Hongo, T. Watanabe, A.T. Yokobori Jr, Creep crack growth analysis of welded joints for high Cr heat resisting steel, ASTM STP1480 1480 (2008) 93-101. DOI: https://doi.org/10.1520/STP45506S

K.J. Hsia, A.S. Argon, D.M. Parks, Modeling of creep damage evolution around blunt notches and sharp cracks, Mech. Mater. 11 (1991) 19-42. https://doi.org/10.1016/0167-6636(91)90037-Z DOI: https://doi.org/10.1016/0167-6636(91)90037-Z

J.R. Rice, M.A. Johnson, The role of large crack tip geometry changes in plane strain fracture, In: Inelastic behavior of Solids, New York; (1970) 641-672.

B. Ozmat, A.S. Argon, D.M. Parks, Growth modes of cracks in creeping type 304 stainless steel, Mech. Mater. 11 (1991) 1-17. https://doi.org/10.1016/0167-6636(91)90036-Y DOI: https://doi.org/10.1016/0167-6636(91)90036-Y

Y. Luo, W.C. Jiang, Z.Y. Zhang, Y.C. Zhang, W. Woo, S.T. Tu, Notch effect on creep damage for Hastelloy C276-BNi2 brazing joint, Mater. Design. 84 (2015) 212-222. https://doi.org/10.1016/j.matdes.2015.06.111 DOI: https://doi.org/10.1016/j.matdes.2015.06.111

Downloads

Published

2019-10-18

Issue

Section

Articles

How to Cite

1.
Finite Element Analysis of Creep Crack Initiation in Functionally Graded Materials with Crack Parallel to the Gradient. Int. J. Archit. Eng. Technol. [Internet]. 2019 Oct. 18 [cited 2026 Feb. 12];6(1):17-23. Available from: https://www.avantipublishers.com/index.php/ijaet/article/view/801

Similar Articles

1-10 of 14

You may also start an advanced similarity search for this article.