Decoding Electrocatalysis: Transforming Aluminum-Clad TLC Plates into Potash Alum for Hydrogen Evolution Exploration

Authors

  • Nilankar Diyali Department of Chemistry, University of North Bengal, Darjeeling 734013, India
  • Bhaskar Biswas Department of Chemistry, University of North Bengal, Darjeeling 734013, India https://orcid.org/0000-0002-5447-9729
  • Gopal Sarkar Department of Chemistry, University of North Bengal, Darjeeling 734013, India

DOI:

https://doi.org/10.15377/2409-5826.2023.10.7

Keywords:

Activated, Potash alumn, H2 production, Alkaline medium, Heterogeneous electrocatalysis

Abstract

This work deals with using a waste aluminum-based TLC plate to prepare crystalline potash alum, which is subsequently activated for the study of hydrogen evolution reaction in alkaline KOH. The structural and morphological characterization of the synthesized potash alum (PA) has been assessed with powder X-ray diffraction and thermogravimetry analysis. Scanning electron micrographs reveal the morphology of the activated potash alum. The heterogeneous electrocatalytic HER activity in 1 M KOH attributes a moderate electrocatalytic efficiency for activated potash alum (APA) in the light of onset potentials, Faradic efficiency, double-layer capacitance, electrochemically activated surface area, and number of active sites. However, the electrocatalyst APA is a pre-catalyst as it undergoes a significant structural transformation under the electrochemical operation, leading to Al2O3 nanoparticles being the active catalyst for hydrogen production. Possibly, the chemical inertness of the Al2O3 induces a limitation in the local vicinity for the synergistic effect for facile electron transport in alkaline KOH.

Downloads

Download data is not yet available.

References

Arsalis A, Alexandrou A. Effect of collector tilt angle on the performance of a residential solar-heating-and-cooling system. J Adv Therm Sci Res. 2015; 1: 44-50. https://doi.org/10.15377/2409-5826.2014.01.02.2 DOI: https://doi.org/10.15377/2409-5826.2014.01.02.2

Gingu O, Harabor A, Rotaru P, Pascu I, Ciupitu I, Benga G, et al. Influence of two steps sintering parameters on tribological behavior of hybrid hydroxyapatite-based biocomposites. J Adv Therm Sci Res. 2015; 1: 66-70. https://doi.org/10.15377/2409-5826.2014.01.02.5 DOI: https://doi.org/10.15377/2409-5826.2014.01.02.5

Rasaily S, Sharma D, Pradhan S, Diyali N, Chettri S, Gurung B, et al. Multifunctional catalysis by a one-dimensional copper(II) metal-organic framework containing pre-existing coordinatively unsaturated sites: Intermolecular C–N, C–O, and C–S Cross-Coupling; Stereoselective intramolecular C–N coupling; and aziridination reactions. Inorg Chem. 2022; 61: 13685-99. https://doi.org/10.1021/acs.inorgchem.2c00270 DOI: https://doi.org/10.1021/acs.inorgchem.2c00270

Diyali N, Rasaily S, Biswas B. Metal–organic framework: An emergent catalyst in C–N cross-coupling reactions. Coord Chem Rev. 2022; 469: 214667. https://doi.org/10.1016/j.ccr.2022.214667 DOI: https://doi.org/10.1016/j.ccr.2022.214667

Jiang F, Zeng J, Wu W, Peng P. Direct numerical simulation modeling of multidisciplinary transport during li-ion battery charge/discharge processes. J Adv Therm Sci Res. 2014; 1(2): 32–43. https://doi.org/10.15377/2409-5826.2014.01.02.1 DOI: https://doi.org/10.15377/2409-5826.2014.01.02.1

Elishav O, Mosevitzky Lis B, Miller EM, Arent DJ, Valera-Medina A, Grinberg Dana A, et al. Progress and prospective of nitrogen-based alternative fuels. Chem Rev. 2020; 120: 5352-436. https://doi.org/10.1021/acs.chemrev.9b00538 DOI: https://doi.org/10.1021/acs.chemrev.9b00538

Dawood F, Anda M, Shafiullah GM. Hydrogen production for energy: An overview. Int J Hydrogen Energy. 2020; 45: 3847-69. https://doi.org/10.1016/j.ijhydene.2019.12.059 DOI: https://doi.org/10.1016/j.ijhydene.2019.12.059

Wang J, Xu F, Jin H, Chen Y, Wang Y. Non‐noble metal‐based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv Mater. 2017; 29(14): 1605838. https://doi.org/10.1002/adma.201605838 DOI: https://doi.org/10.1002/adma.201605838

Diyali S, Diyali N, Biswas B. Coordination-driven electrocatalysts as an evolving wave of enthusiasm for sustainable hydrogen production. Coord Chem Rev. 2024; 500: 215496. https://doi.org/10.1016/j.ccr.2023.215496 DOI: https://doi.org/10.1016/j.ccr.2023.215496

Wijayati N, Lestari LR, Wulandari LA, Mahatmanti FW, Rakainsa SK, Cahyono E, et al. Potassium Alum [KAl(SO4)2∙12H2O] a solid catalyst for effective and selective methoxylation production of alpha-pinene ether products. Heliyon. 2021; 7: E06058. https://doi.org/10.1016/j.heliyon.2021.e06058 DOI: https://doi.org/10.1016/j.heliyon.2021.e06058

Abdulwahab AM, Al-magdashi YAA, Meftah A, Al-Eryani DA, Qaid AA. Growth, structure, thermal, electrical, and optical properties of potassium aluminum sulfate dodecahydrate (potash alum) single crystal. Chinese J Phys. 2019; 60: 510-21. https://doi.org/10.1016/j.cjph.2019.05.034 DOI: https://doi.org/10.1016/j.cjph.2019.05.034

Souza R, Navarro R, Grillo AV, Brocchi E. Potassium alum thermal decomposition study under non-reductive and reductive conditions. J Mater Res Technol. 2019; 8: 745-51. https://doi.org/10.1016/j.jmrt.2018.05.017 DOI: https://doi.org/10.1016/j.jmrt.2018.05.017

Wojciechowska R, Wojciechowski W, Kamiński J. Thermal decompositions of ammonium and potassium alums. J Therm Anal. 1988; 33: 503-9. https://doi.org/10.1007/BF01913929 DOI: https://doi.org/10.1007/BF01913929

Kishimura H, Imasu Y, Matsumoto H. Dehydration of potassium alum induced by shock loading. J Phys Conf Ser. 2014; 500: 182020. https://doi.org/10.1088/1742-6596/500/18/182020 DOI: https://doi.org/10.1088/1742-6596/500/18/182020

Kishimura H, Imasu Y, Matsumoto H. Thermal dehydration of potash alum studied by Raman spectroscopy and X-ray diffraction analysis. Mater Chem Phys. 2015; 149: 99-104. https://doi.org/10.1016/j.matchemphys.2014.09.049 DOI: https://doi.org/10.1016/j.matchemphys.2014.09.049

Alzomor AK, Moharram AS, Al Absi NM. Formulation and evaluation of potash alum as deodorant lotion and after shaving astringent as cream and gel. Int Curr Pharm J. 2014; 3: 228-33. https://doi.org/10.3329/icpj.v3i2.17512 DOI: https://doi.org/10.3329/icpj.v3i2.17512

Dubasi N, Varala R, Bollikolla H, Kotra V. Applications of Alum (KAl(SO4)2.12H2O) in organic synthesis and as catalysis: A quinquennial update. J Chem Rev. 2023; 5: 263-80.

Yokel R. Aluminum in Food – The nature and contribution of food additives. In: El-Samragy Y, Ed., Food Additive. USA: University of Kentucky; 2012, PP. 205-28. http://dx.doi.org/10.5772/30847 DOI: https://doi.org/10.5772/30847

Paigude T. Formulation and evaluation of alum toner spray for anti-acne effect. Int J Creat Res Thoughts. 2023; 11: 456–68.

Farmani AA, Nasirpouri F. Boosting hydrogen and oxygen evolution reactions on electrodeposited nickel electrodes: Via simultaneous mesoporosity, magnetohydrodynamics and high gradient magnetic force. J Mater Chem A. 2020; 8: 24782-99. https://doi.org/10.1039/D0TA06906J DOI: https://doi.org/10.1039/D0TA06906J

Debnath A, Diyali S, Das M, Panda SJ, Mondal D, Dhak D, et al. Harnessing the hydrogen evolution reaction (HER) through the electrical mobility of an embossed Ag(i)-molecular cage and a Cu(ii)-coordination polymer. Dalton Trans. 2023; 52: 8850-6. https://doi.org/10.1039/D3DT01073B DOI: https://doi.org/10.1039/D3DT01073B

Diyali S, Diyali N, Das M, Joshi M, Ray PP, Sher Shah MdSA, et al. Supramolecular Framework-Driven Electrical Conductivities and Hydrogen Evolution Activities of Hybrid Nickel(II)–Cerium(IV) Complex Salts Cooperativity. Cryst Growth Des. 2022; 22: 7590-602. https://doi.org/10.1021/acs.cgd.2c01115 DOI: https://doi.org/10.1021/acs.cgd.2c01115

Raveendran A, Chandran M, Dhanusuraman R. A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts. RSC Adv. 2023; 13: 3843-76. https://doi.org/10.1039/D2RA07642J DOI: https://doi.org/10.1039/D2RA07642J

Yu F, Yu L, Mishra IK, Yu Y, Ren ZF, Zhou HQ. Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis. Mater Today Phys. 2018; 7: 121-38. https://doi.org/10.1016/j.mtphys.2018.11.007 DOI: https://doi.org/10.1016/j.mtphys.2018.11.007

Werner P-E, Erikson L, Westdahl M. Program TREOR-5, Institute of Inorganic Chemistry, University of Stockholm, Sweden, 1988.

Shinagawa T, Garcia-Esparza AT, Takanabe K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep. 2015; 5: Article number: 13801. https://doi.org/10.1038/srep13801 DOI: https://doi.org/10.1038/srep13801

Mohanty B, Ghorbani-Asl M, Kretschmer S, Ghosh A, Guha P, Panda SK, et al. MoS2 quantum dots as efficient catalyst materials for the oxygen evolution reaction. ACS Catal. 2018; 8: 1683-9. https://doi.org/10.1021/acscatal.7b03180 DOI: https://doi.org/10.1021/acscatal.7b03180

Zhou Z, Wei L, Wang Y, Karahan HE, Chen Z, Lei Y, et al. Hydrogen evolution reaction activity of nickel phosphide is highly sensitive to electrolyte pH. J Mater Chem A. 2017; 5: 20390-7. https://doi.org/10.1039/C7TA06000A DOI: https://doi.org/10.1039/C7TA06000A

Downloads

Published

2023-12-24

Issue

Section

Articles

How to Cite

1.
Decoding Electrocatalysis: Transforming Aluminum-Clad TLC Plates into Potash Alum for Hydrogen Evolution Exploration. J. Adv. Therm. Sci. Res. [Internet]. 2023 Dec. 24 [cited 2026 Feb. 14];10:89-97. Available from: https://www.avantipublishers.com/index.php/jatsr/article/view/1472

Similar Articles

1-10 of 14

You may also start an advanced similarity search for this article.