Structural Stability Assessment of a Masonry Chimney Subjected to Shocks by Vibration Measurements


Tall structures, Masonry chimney, Structural stability, Structural monitoring, Vibration measurements.

How to Cite

F. Telch, G. Lacidogna, O. Rösch. Structural Stability Assessment of a Masonry Chimney Subjected to Shocks by Vibration Measurements. Int. J. Archit. Eng. Technol. [Internet]. 2018 Dec. 31 [cited 2023 May 31];5(1):38-51. Available from:


 Nowadays buildings can be stressed and shocked in different ways. Rail and road traffic, demolition work, machines, bells, wind and human movement itself can burden structures and disturb people. Not only a vibration prognosis, but also a monitoring during certain work is important to ensure buildings’ stability. A masonry chimney subject to shocks due to demolition works of surrounding halls was examined by using a new vibration measuring technique. This paper describes this new technique and its application during monitoring. For the measurement technique, the limit values of the German standard DIN 4150-3 were used and the events where this reference values exceeded, were examined in detail. A dynamic analysis of the structure, where the natural frequencies and their modal masses were determined, shows that the frequency-dependent reference values of the German standard DIN4150-3 for the protection of structures, include a relatively high safety factor. A possible exceeding of the values does not immediately lead to a loss of stability.


Adams RD, Cawley P, Pye CJ, Stone BJ, A vibration technique for non-destructively assessing the integrity of structures. Journal of Mechanical Engineering Science, 1978; 20: 93-100.

Andersen JE, Fustinoni M, Structural Health Monitoring Systems. COWI-Futurec, L&S S.r.l. Servizi Grafici, Milano, Italy, 2006.

Le Diourion T., The health monitoring of Rion-Antirion Bridge. Proc. 23rd Conference and Exposition on Structural Dynamics (IMAC - XXIII), Orlando, Florida, 2005.

Brownjohn JMW, Carden P, Real-time operation modal analysis of Tamar Bridge. Proc. 26th Conference and Exposition on Structural Dynamics (IMAC - XXVI), Orlando, Florida, 2008.

Cross EJ, Koo K, Brownjohn JMW, Worden K, (2010). Longterm monitoring and data analysis of the Tamar Bridge. Mechanical Systems and Signal Processing, 2013; 35: 16-34.

Casas JR, Aparicio AC, Monitoring of the Alamillo cablestayed bridge during construction. Experimental Mechanics, 1998, 38: 24-28.

Casas JR, Aparicio AC, Rain-wind induced vibrations in the Alamillo cable-stayed bridge (Sevilla, Spain). Assessment and remedial action. Structure and Infrastructure Engineering, 2010; 6: 549-556.

CIGB ICOLD, Dam monitoring. General considerations. International Commission on Large Dams, Bulletin 60, Paris, 1988.

Brownjohn JMW, Carden EP, Goddard RC, Oudin C, Realtime performance monitoring of tuned mass damper system for a 183m reinforced concrete chimney. Wind Engineering and Industrial Aerodynamics, 2010; 98: 169-179.

Cawley P, Adams RD. The location of defects in structures from measurements of natural frequencies. Journal of Strain Analysis, 1979; 14: 49-57.

Lilley DM, Adams RD, Larnach WJ. Location of defects within embedded model piles using a resonant vibration technique. Proc. 10th World Conference on Nondestructive Testing, Moscow, Russia, 1982.

De Roeck G, The state of the art of damage detection by vibration monitoring: the SIMCES experience. Structural Control and Health Monitoring, 2003; 10: 127-134.

Catbas FN, Kijewski-Correa T, Aktan AE. Structural Identification (ST-Id) of Constructed Facilities. Approaches, Methods and Technologies for Effective Practice of St‐Id. ASCE SEI Committee on Structural Identification of Constructed Systems, 2011.

Lacidogna G, Piana G, Carpinteri A. Acoustic emission and modal frequency variation in concrete specimens under fourpoint bending. Applied Sciences-Basel, 2017; 7: 339.

Lacidogna G, Piana G, Carpinteri A. Damage monitoring of three-point bending concrete specimens by acoustic emission and resonant frequency analysis. Engineering Fracture Mechanics, 2018.

Kramer H, Angewandte Baudynamik, Grundlagen und Praxisbeispiele, Edition 2, Wilhelm Ernst & Sohn, Berlin, 2013.

UNI 9916 Rules, Criteri di misura e valutazione degli effetti delle vibrazioni sugli edifici, 2004 (in Italian)

Carpinteri A, Lacidogna G. Structural monitoring and integrity assessment of medieval towers. Journal of Structural Engineering (ASCE), 2006; 132: 1681-1690. 9445(2006)132:11(1681)

Carpinteri A, Lacidogna G. Damage evaluation of three masonry towers by acoustic emission. Engineering Structures, 2007, 29: 1569-1579.

Carpinteri A, Grazzini A, Lacidogna G, Manuello A. Durability evaluation of reinforced masonry by fatigue tests and acoustic emission technique. Structural Control and Health Monitoring, 2014; 21, 950-961.

Han Q, Xu xJ, Carpinteri A, Lacidogna G. Localization of acoustic emission sources in structural health monitoring of masonry bridge. Structural Control and Health Monitoring, 2015; 22: 314-329.

Carpinteri A, Lacidogna G, Manuello A, Niccolini G. A study on the structural stability of the Asinelli Tower in Bologna. Structural Control and Health Monitoring, 2016; 23: 659-667.

Implementation plans from 1962, draw by Ooms Ittner & Cio, Köln.

Schröder M, Pocha A, Deutscher Abbruchverband e. V., Abbrucharbeiten, Grundlagen, Planung, Durchführung, Ed. 3, Verlaggesellschaft Rudolf Müller GmbH & Co. KG., Köln, 2015.

Korth D, Lippok J. Abbrucharbeiten, Vorbereitung und Durchführung, Ed. 2, VEB Verlag für Bauwesen, Berlin, 1987.

Kuttner T, Praxiswissen Schwingungsmesstechnik, Fakultät für Maschinenbau Universität der Bundeswehr München, Springer Vieweg, Neubiberg, 2015.

Hübner E. Technische Schwingungslehre in ihren Grundzügen, Springer Verlag, Berlin/Göttingen/Heidelberg, 1957.

National Instruments, NI DIAdem, Erste Schritte mit DIAdem, National Instruments Corporation, München, 2014.

National Instruments, NI DIAdem, Daten finden, analysieren und dokumentieren, National Instruments Corporation, München, 2014.

National Instruments, NI DIAdem, Daten erfassen und visualisieren, National Instruments Corporation, München, 2014.

DIN 4150-3 rules, Vibrations in buildings – Part 3: Effects on structures, 2016 (in German).

Telch F. Vibration measurements and their assessment concerning the effect on a masonry chimney, Masterthesis, Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, and Materials Testing and Research Institute (MPA), Karlsruher Institute of Technology, Tutors: Lacidogna G. (DISEG) and Rösch O. (MPA).

Rösch O. Prüfbericht: Schwingungsmessung und Erschütterungsüberwachung an einem bestehenden Ziegelschornstein im Zuge der Rückbaumaßnahmen am Steinzeugpark in Bretten, Karlsruhe, 2017.

Das A. Signal Conditioning. An Introduction to Continuous Wave, Communication and Signal Processing, Springer Verlag, Berlin - Heidelberg, 2012.

Haupt W, Bodendynamik, Grundlagen und Anwendung, Friedr. Vieweg & Sohn, Braunschwieg/Wiesbaden, 1986.

Korenev BG, Rabinovic IM, Baudynamik, Handbuch, VEB Verlag für Bauwesen, Berlin, 1980.

Stempniewski L., Haag B., Baudynamik-Praxis, Mit zahlreichen Anwendungsbeispielen, Bauwerk Verlag GmbH, Berlin, 2010.

DIN EN 1996-1-1/NA, National Annex –Nationally determined parameters – Eurocode 6: Design of masonry structures –Part 1-1: General rules for reinforced and unreinforced masonry structures. 2012.

DIN EN 1996-3/NA, National Annex –Nationally determined parameters –Eurocode 6: Design of masonry structures – Part 3: Simplified calculation methods for unreinforced masonry structures. 2012.

DIN EN 1998-1, Eurocode 8: Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings; German version EN 1998-1: 2004 + AC:2009.

All the published articles are licensed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.