A Short Introduction of Blade Cooling Mechanisms in Old Gas Turbines with the Aim of Proper Distribution of Temperature Profile
Abstract - 116
PDF

Keywords

Blade
Gas turbine
Service life
Cooling mechanism
Temperature distribution

How to Cite

1.
Kashyzadeh KR, Souri K. A Short Introduction of Blade Cooling Mechanisms in Old Gas Turbines with the Aim of Proper Distribution of Temperature Profile. J. Adv. Therm. Sci. Res. [Internet]. 2023 Dec. 29 [cited 2024 May 1];10:98-111. Available from: https://www.avantipublishers.com/index.php/jatsr/article/view/1463

Abstract

Presently, old gas turbines are used in the industry of some developing countries without high tech, which face many problems in the field of thermal efficiency and output power. Typically, turbines operate in the temperature range of 1200 to 1500 degrees Celsius. Many studies have been done to increase the efficiency of such systems. The results show that this increase in temperature at the inlet of the gas turbine has negative consequences, such as increasing the thermal load of the turbine blades and thus reducing the lifetime of the blades. On the other hand, a damaged blade can cause serious damage to other blades as well as the main shaft and other parts in various ways and sometimes lead to complete failure of the turbine. Therefore, it is reasonable to consider cost reduction considerations, including maintenance. Hence, due to the limitation of thermal stresses for the continuous operation of gas turbine blades, the distribution of heat transferred to them must be controlled. In this regard, the presence of blade cooling mechanisms is necessary for its safe operation, because the operating temperature of the gas turbine is much higher than the allowable temperature of the blades. In addition to cooling the blades, cooling the shell and inlet nozzle of gas turbines is also extremely important. But since the blades are exposed to high-level stress and tension for a long time, their cooling is more important and sensitive. For this reason, in the present article, the authors tried to provide a short introduction to the efficient mechanisms in cooling the blades related to the old systems, whose effect is noticeable on increasing the lifetime of the blades.

https://doi.org/10.15377/2409-5826.2023.10.8
PDF

References

Ridha WKM, Kashyzadeh RK, Ghorbani S. Common failures in hydraulic kaplan turbine blades and practical solutions. Materials. 2023; 16(9): 3303.‏ https://doi.org/10.3390/ma16093303

Kashyzadeh KR, Arghavan A. Study of the effect of different industrial coating with microscale thickness on the CK45 steel by experimental and finite element methods. Strength Mater. 2013; 45: 748-57.‏ https://doi.org/10.1007/s11223-013-9510-x

Arghavan A, Reza Kashyzadeh K, Asfarjani, AA. Investigating effect of industrial coatings on fatigue damage. Appl Mech Mater. 2011; 87: 230-37.‏ https://doi.org/10.4028/www.scientific.net/AMM.87.230

Kashyzadeh KR. A new algorithm for fatigue life assessment of automotive safety components based on the probabilistic approach: The case of the steering knuckle. Eng Sci Technol. 2020; 23(2): 392-404.‏ https://doi.org/10.1016/j.jestch.2019.05.011

Kashyzadeh KR, Farrahi GH, Shariyat M, Ahmadian MT. Experimental accuracy assessment of various high-cycle fatigue criteria for a critical component with a complicated geometry and multi-input random non-proportional 3D stress components. Eng Fail Anal. 2018; 90: 534-53.‏ https://doi.org/10.1016/j.engfailanal.2018.03.033

Shariyat M. New multiaxial HCF criteria based on instantaneous fatigue damage tracing in components with complicated geometries and random non-proportional loading conditions. Int J Damage Mech. 2010; 19(6): 659-90.‏ https://doi.org/10.1177/1056789509338317

Shariyat M. Three energy‐based multiaxial HCF criteria for fatigue life determination in components under random non‐proportional stress fields. Fatigue Fract Eng Mater Struct. 2009; 32(10): 785-808.‏ https://doi.org/10.1111/j.1460-2695.2009.01381.x

Marahleh G, Kheder ARI, Hamad HF. Creep-life prediction of service-exposed turbine blades. Mater Sci. 2006; 42: 476-81.‏ https://doi.org/10.1007/s11003-006-0103-8

Puspitasari P, Andoko A, Kurniawan P. Failure analysis of a gas turbine blade: A review. IOP Conf Ser Mater Sci Eng. 2011; 1034(1): 012156.‏ https://doi.org/10.1088/1757-899X/1034/1/012156

Karaivanov VG, Mazzotta DW, Chyu MK, Slaughter WS, Alvin MA. Three-dimensional modeling of creep damage in airfoils for advanced turbine systems. Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. Volume 5: Structures and Dynamics, Parts A and B. Berlin, Germany: June 9-13, 2008, pp. 225-234.‏ https://doi.org/10.1115/GT2008-51278

Liu D, Li H, Liu Y. Numerical simulation of creep damage and life prediction of superalloy turbine blade. Math Probl Eng. 2015; 2015: 732502. https://doi.org/10.1155/2015/732502

Vacchieri E, Holdsworth SR, Costa A, Poggio E, Riva A, Villari P. Creep–fatigue interaction in two gas turbine Ni based superalloys subjected to service-like conditions. Mater High Temp. 2014; 31(4): 348-56.‏ https://doi.org/10.1179/0960340914Z.00000000052

Yan X, Nie J. Creep-fatigue tests on full scale directionally solidified turbine blades. J Eng Gas Turbines Power. 2008;‏ 130(4): 044501. https://doi.org/10.1115/1.2901174

Sun D, Ma G, Wan Z, Gao J. Study on creep-fatigue interaction mechanism and life prediction of aero-engine turbine blade. Eng Fail Anal. 2023; 154: 107715.‏ https://doi.org/10.1016/j.engfailanal.2023.107715

Paulose N, Fernando CD, Banerjee A, Sahu JK, Narendra Babu SN. Creep–fatigue interaction study on gas turbine engine alloy. In Chaari F, Gherardini F, Ivanov V, Haddar M, Eds., Lecture Notes in Mechanical Engineering. 2018; pp. 323-33.‏ https://doi.org/10.1007/978-981-10-6002-1_25

Poursaeidi E, Kavandi A, Torkashvand K. Study of creep–fatigue crack growth behavior in a gas turbine casing. J Fail Anal Preven. 2018; 18: 1607-15.‏ https://doi.org/10.1007/s11668-018-0559-5

Igumenov IK, Aksenov AN. Thermal barrier coatings on gas turbine blades: Chemical vapor deposition. Therm Eng. 2017; 64: 865-73.‏ https://doi.org/10.1134/S0040601517120035

Mazur Z, Luna-Ramirez A, Juárez-Islas JA, Campos-Amezcua A. Failure analysis of a gas turbine blade made of Inconel 738LC alloy. Eng Fail Anal. 2005; 12(3): 474-86.‏ https://doi.org/10.1016/j.engfailanal.2004.10.002

Bannazadeh R, Riahi M, Aieneravaie M. Failure analysis of a gas turbine blade made of inconel 738LC super alloy. Amirkabir J Mech Eng. 2018; 50(1): 103-12.‏ https://doi.org/10.22060/mej.2016.773

Vaezi M, Soleymani M. Creep Life prediction of inconel 738 gas turbine blade. J Appl Sci. 2009; 9(10): 1950-5.‏ https://doi.org/10.3923/jas.2009.1950.1955

Bonakdar A, Molavi-Zarandi M, Chamanfar A, Jahazi M, Firoozrai A, Morin E. Finite element modeling of the electron beam welding of Inconel-713LC gas turbine blades. J Manuf Process. 2017; 26: 339-54.‏ https://doi.org/10.1016/j.jmapro.2017.02.011

Chamanfar A, Jahazi M, Bonakdar A, Morin E, Firoozrai A. Cracking in fusion zone and heat affected zone of electron beam welded Inconel-713LC gas turbine blades. Mater Sci Eng A. 2015; 642: 230-40.‏ https://doi.org/10.1016/j.msea.2015.06.087

Patsa CK, Mohammed S. Structural analysis of super alloy gas turbine blade using fea. Int J Eng Res Technol. 2014; 3(1): 3068-72.

Khan MA, Sundarrajan S, Natarajan S. Influence of plasma coatings on Inconel 617 for gas turbine applications. Surf Eng. 2014; 30(9): 656-61.‏ https://doi.org/10.1179/1743294414Y.0000000296

Ma D. Novel casting processes for single-crystal turbine blades of superalloys. Front Mech Eng. 2018; 13(1): 3-16.‏ https://doi.org/10.1007/s11465-018-0475-0

Arakere NK, Swanson G. Effect of crystal orientation on fatigue failure of single crystal nickel base turbine blade superalloys. J Eng Gas Turbines Power. 2002; 124(1): 161-76.‏ https://doi.org/10.1115/1.1413767

Angel NM, Basak A. On the fabrication of metallic single crystal turbine blades with a commentary on repair via additive manufacturing. J Manuf Mater Process. 2020; 4(4): 101.‏ https://doi.org/10.3390/jmmp4040101

Sinha A, Swain B, Behera A, Mallick P, Samal SK, Vishwanatha HM, Behera A. A review on the processing of aero-turbine blade using 3D print techniques. J Manuf Mater Process. 2022; 6(1): 16.‏ https://doi.org/10.3390/jmmp6010016

Xu L, Sun Z, Ruan Q, Xi L, Gao J, Li Y. Development trend of cooling technology for turbine blades at super-high temperature of above 2000 K. Energies. 2023; 16(2): 668.‏ https://doi.org/10.3390/en16020668

Han JC. Recent studies in turbine blade cooling. Int J Rotat Mach. 2004; 10(6): 443-57.‏ https://doi.org/10.1155/S1023621X04000442

Han JC. Turbine blade cooling studies at Texas A&M University: 1980-2004. J Thermophys Heat Transf. 2006; 20(2): 161-87.‏ https://doi.org/10.2514/1.15403

Takeishi K, Aoki S, Sato T, Tsukagoshi K. Film cooling on a gas turbine rotor blade.‏ J Turbomach. 1992; 114(4): 828-34. https://doi.org/10.1115/1.2928036.

Glezer B, Moon HK, O’Connell T. A novel technique for the internal blade cooling. In Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers;1996; 78750: V004T09A015. https://doi.org/10.1115/96-GT-181

Iacovides H, Launder BE. Computational fluid dynamics applied to internal gas-turbine blade cooling: a review. Int J Heat Fluid Flow. 1995; 16(6): 454-70.‏ https://doi.org/10.1016/0142-727X(95)00072-X

Han JC, Rallabandi A. Turbine blade film cooling using PSP technique. Front Heat Mass Transf. 2010; 1(1): 013001.‏ http://dx.doi.org/10.5098/hmt.v1.1.3001

Gao Z, Han JC. Influence of film-hole shape and angle on showerhead film cooling using PSP technique. J Heat Transf. 2009; 131(6): 061701.‏ https://doi.org/10.1115/1.3082413

Singh SO, Prasad BN. Influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle. Appl Therm Eng. 2008; 28(17-18): 2315-26. https://doi.org/10.1016/j.applthermaleng.2008.01.022

Sunden B, Xie G. Gas turbine blade tip heat transfer and cooling: a literature survey. Heat Transf Eng. 2010; 31(7): 527-54.‏ https://doi.org/10.1080/01457630903425320

Bunker RS. Axial turbine blade tips: function, design, and durability. J Propul Power. 2006; 22(2): 271-85.‏ https://doi.org/10.2514/1.11818

Ito S, Goldstein RJ, Eckert ER. Film cooling of a gas turbine blade.‏ J Eng Gas Turbines Power. 1978; 100(3): 476-81. https://doi.org/10.1115/1.3446382

Dring RP, Blair MF, Joslyn HD. An experimental investigation of film cooling on a turbine rotor blade.‏ J Eng Gas Turbines Power. 1980; 102(1): 81-7. https://doi.org/10.1115/1.3230238

Joo J, Durbin P. Simulation of turbine blade trailing edge cooling. J Fluids Eng. 2009; 131(2):‏ 021102. https://doi.org/10.1115/1.3054287

Han JC, Huh M. Recent studies in turbine blade internal cooling. In TURBINE-09. Proceedings of International Symposium on Heat Transfer in Gas Turbine Systems. Antalya, Turkey: August 9-14, 2009.‏ https://doi.org/10.1615/ICHMT.2009.HeatTransfGasTurbSyst.460

Han JC, Ekkad S. Recent development in turbine blade film cooling. Int J Rotating Mach. 2001; 7(1): 21-40.‏ https://doi.org/10.1155/S1023621X01000033

Wilcock RC, Young JB, Horlock JH. The effect of turbine blade cooling on the cycle efficiency of gas turbine power cycles. J Eng Gas Turbines Power. 2005; 127(1): 109-20.‏ https://doi.org/10.1115/1.1805549

Nowak G, Wróblewski W. Optimization of blade cooling system with use of conjugate heat transfer approach. Int J Thermal Sci. 2011; 50(9): 1770-81.‏ https://doi.org/10.1016/j.ijthermalsci.2011.04.001

Hylton LD, Mihelc MS, Turner ER, Nealy DA, York RE. Analytical and experimental evaluation of the heat transfer distribution over the surfaces of turbine vanes. 1983; Document ID: 19830020105. Available from: https://ntrs.nasa.gov/api/citations/19830020105/downloads/19830020105.pdf

Storti B, Garelli L, Storti M, D'elia J. Optimization of an internal blade cooling passage configuration using a Chimera approach and parallel computing. Finite Elem Anal Des. 2020; 177: 103423.‏ https://doi.org/10.1016/j.finel.2020.103423

Mazaheri K, Zeinalpour M, Bokaei HR. Turbine blade cooling passages optimization using reduced conjugate heat transfer methodology. Appl Therm Eng. 2016; 103: 1228-36.‏ https://doi.org/10.1016/j.applthermaleng.2016.05.007

Amaral S, Verstraete T, Van den Braembussche R, Arts T. Design and optimization of the internal cooling channels of a high pressure turbine blade—part I: methodology.‏ J Turbomach. 2010; 132(2): 021013. https://doi.org/10.1115/1.3104614

Hou NX, Gou WX, Wen ZX, Yue ZF. The influence of crystal orientations on fatigue life of single crystal cooled turbine blade. Mater Sci Eng: A. 2008; 492(1-2): 413-8.‏ https://doi.org/10.1016/j.msea.2008.03.043

Gallerneau F, Chaboche JL. Fatigue life prediction of single crystals for turbine blade applications. Int J Damage Mech. 1999; 8(4): 404-27.‏ https://doi.org/10.1177%2F105678959900800407

He N, Feng P, Li ZW, Tan LG, Pang T, Chen YZ, Yang C. Fatigue life prediction of centrifugal fan blades in the ventilation cooling system of the high-speed-train. Eng Fail Anal. 2021; 124: 105373.‏ https://doi.org/10.1016/j.engfailanal.2021.105373

Holländer D, Kulawinski D, Weidner A, Thiele M, Biermann H, Gampe U. Small-scale specimen testing for fatigue life assessment of service-exposed industrial gas turbine blades. Int J Fatigue. 2016; 92: 262-71.‏ https://doi.org/10.1016/j.ijfatigue.2016.07.014

Adam TJ, Exner W, Wierach P. Taurine-Modified Boehmite Nanoparticles for GFRP Wind Turbine Rotor Blade Fatigue Life Enhancement. Materials. 2021; 14(22): 6997.‏ https://doi.org/10.3390/ma14226997

Chen C, Zhang XY, Yan XJ, Ren J, Huang DW, Qi MJ. Effect of laser shock peening on combined low-and high-cycle fatigue life of casting and forging turbine blades. J Iron Steel Res Int. 2018; 25(1): 108-19.‏ https://doi.org/10.1007/s42243-017-0013-z

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Kazem Reza Kashyzadeh, Kambiz Souri