On Self-Motions of Planar Stewart-Gough Platforms


Duporcq’s theorem
Borel-Bricard problem
Super-ellipsoid surface
Stewart-Gough platform

How to Cite

Chiroiu V, Brişan C, Munteanu L, Rugină C. On Self-Motions of Planar Stewart-Gough Platforms. Int. J. Archit. Eng. Technol. [Internet]. 2021 Jul. 13 [cited 2022 Aug. 19];8:14-21. Available from: https://www.avantipublishers.com/index.php/ijaet/article/view/1040


Given five pairs of attachment points of a planar platform, there exists a sixth point pair so that the resulting planar architecturally singular platform has the same solution for the direct kinematics. This is a consequence of the Prix Vaillant problem posed in 1904 by the French Academy of Science. The theorem discusses the displacements of certain or all points of a rigid body that move on spherical paths. Borel and Bricard awarded the prizes for two papers in this regard, but they did not solve the problem completely. In this paper, the theorem is extended to the elliptic paths in order to determine the displacements of certain or all points of a rigid body that move on super-ellipsoid surfaces. The poof is based on the trajectories of moving points which are intersections of two implicit super-ellipsoid surfaces.



Duporcq, E., Sur la correspondance quadratique et rationnelle de deux figures planes et sur un déplacement remarquable, C.R.SeancesAcad. Sci., 126, pp.1405-1406, 1898.

Emch, A., Quadratic cremona transformations, in: V. Snyder et al., (Eds.), Selected Topics in Algebraic Geometry, Bulletin of the NationalResearch Council, 63, pp. 13-55, 1928.

Borel, E., Mémoire sur les déplacements à trajectoires sphériques, Mém. Présent. Var. Sci. Acad. Sci. Natl. Inst. Fr. 33 (1) 1-128, 1908.

Bricard, R., Cinematique et mechanismes, Paris, 1953.

Bricard, R., Mémoire sur les déplacements à trajectoires sphériques, J. École Polytech. 11 (2) 1-96, 1906.

Husty, M., Borel's and R. Bricard's Papers on displacements with spherical paths and their relevance to self-motions of parallelmanipulators, in: M. Ceccarelli (Ed.), International Symposium on History of Machines and Mechanisms, Kluwer, pp. 163-172, 2000. https://doi.org/10.1007/978-94-015-9554-4_19

Brișan, C., Chiroiu, V., Munteanu, L., A new version of the Duporcq's equation, Romanian Journal of Mechanics, 3(2)15-26, 2018.

Brișan, C, Boanță, C., Chiroiu, V., Introduction in optimisation of industrial robots. Theory and applications, Editura Academiei, 2019.

Mannheim, A., Principes et Developpements de Geometrie Cinematique, Paris, 1894.

Mannheim, A., Etude d'un deplacement particulier d'une figure de forme invariable, Rendic. Circ. Math. Palermo, 3, pp.131-144, 1889. https://doi.org/10.1007/BF03011514

Nawratil, G., Correcting Duporcq's theorem, Mech. Mach. Theory, 73, pp. 282-295, 2014. https://doi.org/10.1016/j.mechmachtheory.2013.11.012

Nawratil, G., Types of self-motions of planar Stewart Gough platforms, Meccanica 48(5), pp.1177-1190, 2013. https://doi.org/10.1007/s11012-012-9659-6

Nawratil, G., Review and recent results on Stewart Gough platforms with self-motions, Appl. Mech. Mater., 162, 151-160, 2012. https://doi.org/10.4028/www.scientific.net/AMM.162.151

Bricard, R., Lecons Cinematique, Tome I: Cinematique theoretique. Gauthier-Villars, Paris, 1926.

Bricard, R., Lecons Cinematique, Tome II: Cinematique appliquee. Gauthier-Villars, Paris, 1927.

Barr, A.H., Superquadrics and angle-preserving transformations, IEEE Computer Graphics and Applications, 1(1), pp. 11-23, 1981. https://doi.org/10.1109/MCG.1981.1673799

Cleary, P.W., Stokes, N., Hurley, J., Efficient collision detection for three dimensional super-ellipsoidal particles, Proceedings of 8thInternational Computational Techniques and Applications Conference CTAC97, Adelaide, 1997.

Huynh, S.Q., Metrics for 3D rotations: Comparison and analysis, J. Math. Imaging Vis., 35, pp. 1550164, 2009. https://doi.org/10.1007/s10851-009-0161-2

Merlet, J.P., Parallel Robots. New York: Springer-Verlag, 2000. https://doi.org/10.1007/978-94-010-9587-7

Merlet, J.P., Singular configurations of parallel manipulators and Grassmann geometry, Int. J. Robot. Res. 8 (5), 45-56, 1992. https://doi.org/10.1177/027836498900800504

Bottema, O., Roth, B., Theoretical Kinematics, North-Holland publishing company, Dover, 1979.

Karger, A., Parallel manipulators and Borel-Bricard's problem, Comput. Aided Geom. Des., 27(8), 669-680, 2010. https://doi.org/10.1016/j.cagd.2010.07.002

Munteanu, L., Brișan, C., Chiroiu, V., Dumitriu, D., Ioan, R., Chaos-hyperchaos transition in a class of models governed by Sommerfeldeffect, Nonlinear Dyn., 78, 1877-1889, 2014. https://doi.org/10.1007/s11071-014-1575-y

Zavoti, J., Fritsch, D., A first attempt at a new algebraic solution of the exterior orientation of photogrammetry, Acta Geodaetica etGeophysica, Sept. 2011. https://doi.org/10.1556/AGeod.46.2011.3.4

Zavoti, J., Kalmar, J., A comparison of different solutions of the Bursa-Wolf model and of the 3D, 7-parameter datum transformation,Acta Geodaetica et Geophysica, July 2015. https://doi.org/10.1007/s40328-015-0124-6

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.