Condensation Heat Transfer Enhancement on Surfaces with Interlaced Wettability
PDF

Keywords

Condensation heat transfer
interlaced wettability
surface modification.

How to Cite

1.
You-An Lee, Long-Sheng Kuo, Tsung-Wen Su, Chin-Chi Hsu, Ping-Hei Chen. Condensation Heat Transfer Enhancement on Surfaces with Interlaced Wettability. J. Adv. Therm. Sci. Res. [Internet]. 2015 Jan. 15 [cited 2022 May 18];2(1):27-32. Available from: https://www.avantipublishers.com/index.php/jatsr/article/view/214

Abstract

This study investigated the effect of surfaces with interlaced wettability on steam–air mixture condensation. Experiments were conducted on various types of surface with different modified strip widths. In general, surfaces exhibiting high hydrophobic wettability yield a high condensation heat-transfer rate because dropwise condensation is easily formed. However, the experimental results of this study revealed that surfaces with interlaced wettability demonstrated superior condensation heat-transfer performance to those with homogeneous high hydrophobic wettability. Such an observation implies that the configuration of surface modification can enhance condensation heat transfer. In addition, the data indicated an optimal area ratio of modified surfaces to unmodified surfaces.

https://doi.org/10.15377/2409-5826.2015.02.01.4
PDF

References

Andrews HG, Eccles EA, Schofield WCE, Badyal JPS. Three-Dimensional Hierarchical Structures for Fog Harvesting. Langmuir. 2011; 5; 27(7):3798-802.

Lee A, Moon MW, Lim H, Kim WD, Kim HY. Water harvest via dewing. Langmuir. 2012 Jul 10;28(27):10183-91. http://dx.doi.org/10.1021/la3013987

Beer JM. High efficiency electric power generation: The environmental role. Prog Energ Combust. 2007 Apr;33(2):107-34. http://dx.doi.org/10.1016/j.pecs.2006.08.002

McGlen RJ, Jachuck R, Lin S. Integrated thermal management techniques for high power electronic devices. Appl Therm Eng. 2004 Jun; 24(8-9): 1143-56. http://dx.doi.org/10.1016/j.applthermaleng.2003.12.029

Rose JW. Dropwise condensation theory and experiment: a review. P I Mech Eng a-J Pow. 2002; 216(A2): 115-28.

Schmidt E, Schurig W, Sellschopp W. Condensation of water vapour in film- and drop form. Z Ver Dtsch Ing. 1930; 74: 544.

Oner D, McCarthy TJ. Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir. 2000 Oct 3; 16(20): 7777-82. http://dx.doi.org/10.1021/la000598o

Bravo J, Zhai L, Wu ZZ, Cohen RE, Rubner MF. Transparent superhydrophobic films based on silica nanoparticles. Langmuir. 2007 Jun 19; 23(13): 7293-8. http://dx.doi.org/10.1021/la070159q

Rao AV, Latthe SS, Mahadik SA, Kappenstein C. Mechanically stable and corrosion resistant superhydrophobic sol-gel coatings on copper substrate. Appl Surf Sci. 2011 Apr 15; 257(13): 5772-6. http://dx.doi.org/10.1016/j.apsusc.2011.01.099

Narhe RD, Beysens DA. Growth dynamics of water drops on a square-pattern rough hydrophobic surface. Langmuir. 2007 Jun 5; 23(12): 6486-9. http://dx.doi.org/10.1021/la062021y

Cheng YT, Rodak DE. Is the lotus leaf superhydrophobic? Appl Phys Lett. 2005 Apr 4;86(14). http://dx.doi.org/10.1063/1.1895487

Boreyko JB, Chen CH. Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces. Phys Rev Lett. 2009 Oct 30;103(18). http://dx.doi.org/10.1103/PhysRevLett.103.184501

Cheng JT, Vandadi A, Chen CL. Condensation heat transfer on two-tier superhydrophobic surfaces. Appl Phys Lett. 2012 Sep 24;101(13). http://dx.doi.org/10.1063/1.4756800

Miljkovic N, Enright R, Nam Y, Lopez K, Dou N, Sack J, et al. Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces. Nano Lett. 2013 Jan;13(1):179-87. http://dx.doi.org/10.1021/nl303835d

Parker AR, Lawrence CR. Water capture by a desert beetle. Nature. 2001 Nov 01;414(6859):33-4. http://dx.doi.org/10.1038/35102108

Beaini SS, Carey VP. Strategies for Developing Surfaces to Enhance Dropwise Condensation: Exploring Contact Angles, 32 Journal of Advanced Thermal Science Research, 2015, Vol. 2, No. 1 Lee et al. Droplet Sizes, and Patterning Surfaces. J Enhanc Heat Transf. 2013;20(1):33-42. http://dx.doi.org/10.1615/JEnhHeatTransf.2013006822

Carey VP. Molecular dynamics simulations and liquid-vapor phase-change phenomena. Microscale Therm Eng. 2002 Jan-Mar;6(1):1-2. http://dx.doi.org/10.1080/108939502753428194

Xiao R, Miljkovic N, Enright R, Wang EN. Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer. Sci Rep-Uk. 2013 Jun 13;3.

Yao CW, Alvarado JL, Marsh CP, Jones BG, Collins MK. Wetting behavior on hybrid surfaces with hydrophobic and hydrophilic properties. Appl Surf Sci. 2014 Jan 30;290:59-65. http://dx.doi.org/10.1016/j.apsusc.2013.10.188

Chatterjee A, Derby MM, Peles Y, Jensen MK. Enhancement of condensation heat transfer with patterned surfaces. Int J Heat Mass Tran. 2014 Apr;71:675-81. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.12.069

Lo CW, Wang CC, Lu MC. Spatial Control of Heterogeneous Nucleation on the Superhydrophobic Nanowire Array. Adv Funct Mater. 2014 Mar;24(9):1211-7. http://dx.doi.org/10.1002/adfm.201301984

Varanasi KK, Hsu M, Bhate N, Yang WS, Deng T. Spatial control in the heterogeneous nucleation of water. Appl Phys Lett. 2009 Aug 31;95(9). http://dx.doi.org/10.1063/1.3200951

Macner AM, Daniel S, Steen PH. Condensation on Surface Energy Gradient Shifts Drop Size Distribution toward Small Drops. Langmuir. 2014 Feb 25;30(7):1788-98. http://dx.doi.org/10.1021/la404057g

Hsu CC, Su TW, Chen PH. Pool boiling of nanoparticlemodified surface with interlaced wettability. Nanoscale Res Lett. 2012 May 18;7.

Hsu CC, Chen PH. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings. Int J Heat Mass Tran. 2012 Jun;55(13-14):3713-9. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.03.003

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2015 You-An Lee, Long-Sheng Kuo, Tsung-Wen Su, Chin-Chi Hsu, Ping-Hei Chen