Thermal Diffusivity of Ti3C2Tx@C Nanocoils
PDF

Keywords

MXene
Coating
Carbon
Thermal diffusivity
Thermal conductivity

How to Cite

1.
Li Y, Wu F, Zhao S, Deng C. Thermal Diffusivity of Ti3C2Tx@C Nanocoils. J. Adv. Therm. Sci. Res. [Internet]. 2021 Dec. 27 [cited 2022 May 21];8:62-70. Available from: https://www.avantipublishers.com/index.php/jatsr/article/view/1107

Abstract

Ti3C2Tx MXene is an emerging 2D material with excellent electrical and electrochemical properties. Carbon Nanocoil (CNC) is a quasi 1D material with unique helical morphology, which shows remarkable advantages in mechanical and electromagnetic properties. In this work, we designed a Ti3C2Tx@C nanocoil (CMNC) by coating Ti3C2Tx flakes on the surface of CNC for better application performance. The thermophysical properties of single CMNCs were investigated using a transient eletrothermall (TET) technique. The average room temperature thermal diffusivity and thermal conductivity of CMNCs were measured to be 8×10-6 m2/s and 15.6 W/m K, which are one order of magnitude higher than those of CNCs, due to successful coating of MXene on the surface of CNC. However, enhancement of electrical properties brought by MXene coating is much smaller than those of thermal properties. Variable temperature characterization from 298 to 334 K reveals an increasing trend of thermal diffusivity and thermal conductivity with temperature increasing, which is attributed to the interaction and heat transfer between MXene and CNCs. MXene coating provides better thermal management performance for practical applications of CNCs, such as wave absorbing.

https://doi.org/10.15377/2409-5826.2021.08.7
PDF

References

Ihara S, Itoh S, Kitakami J. Helically coiled cage dorms of graphitic carbon. Phys Rev B 1993; 48: 5643-5647. https://doi.org/10.1103/PhysRevB.48.5643

Amelinckx S, Zhang X, Bernaerts D, Zhang X, Ivanov V, Nagy J. A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 1994. https://doi.org/10.1126/science.265.5172.635

Zhao Y, Zuo X, Guo Y, Huang H, Zhang H, Wang T, et al. Structural Engineering of Hierarchical Aerogels Comprised of Multi-dimensional Gradient Carbon Nanoarchitectures for Highly Efficient Microwave Absorption. Nano-Micro Lett 2021;13(9): 20. https://doi.org/10.1007/s40820-021-00667-7

Zhao Y, Zhang H, Yang X, Huang H, Zhao G, Cong T, et al. In situ construction of hierarchical core-shell Fe3O4@C nanoparticles-helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorption. Carbon 2021; 171: 395-408. https://doi.org/10.1016/j.carbon.2020.09.036

Kang G H, Kim S H, Park S. Enhancement of shielding effectiveness for electromagnetic wave radiation using carbon nanocoil-carbon microcoil hybrid materials. Appl Surf Sci 2019; 477(5): 264-270. https://doi.org/10.1016/j.apsusc.2017.10.007

Sanada K, Takada Y, Yamamoto S, Shindo Y. Analytical and Experimental Characterization of Stiffness and Damping in Carbon Nanocoil Reinforced Polymer Composites. J Solid Mecha Mater Engn 2008; 2(12): 1517-1527. https://doi.org/10.1299/jmmp.2.1517

Yang S, Li C, Cong T, Zhao Y, Pan L. Sensitivity-Tunable Strain Sensors Based on Carbon Nanotube@Carbon Nanocoil Hybrid Networks. ACS Appl Mater Interf 2019; 11(41): 38160-38168. https://doi.org/10.1021/acsami.9b12600

Wu J, Sun Y, Wu Z, Li X, Wang N, Tao K, Wang G. Carbon Nanocoil-Based Fast-Response and Flexible Humidity Sensor for Multifunctional Applications. ACS Appl Mater Interf 2019; 11(4):4242-4251. https://doi.org/10.1021/acsami.8b18599

Ma H, Zhang X, Cui R, Liu F, Liu K. Photo-driven nanoactuators based on carbon nanocoil and vanadium dioxide bimorph. Nanoscale 2018; 10(23): 11158-11164. https://doi.org/10.1039/C8NR03622E

Volodin A, Buntinx D, Ahlskog M, Fonseca A, Haesendonck C. Coiled Carbon Nanotubes as Self-Sensing Mechanical Resonators. Nano Lett 2004; 4(9): 1775-1779. https://doi.org/10.1021/nl0491576

Li X, Sun Y, Zhang Z, Feng N, Song H, Liu Y, et al. Visible light-driven multi-motion modes CNC/TiO2 nanomotors for highly efficient degradation of emerging contaminants, Carbon 2019;155:195-203. https://doi.org/10.1016/j.carbon.2019.08.039

Pan L, Hayashida T, Nakayama Y. Fabrication of Carbon Nanocoil Field Emitters and Their Application to Display. J Soci Photograph Sci Tech Jap 2002; 65(5):369-372.

Li D, Pan L, Wu S, Li, S, An active surface enhanced Raman scattering substrate using carbon nanocoils. J Mater Res 2013; 28(16): 2113-2123. https://doi.org/10.1557/jmr.2013.212

Deng C, Pan L, Li C, Fu X, Cui R, Nasir H. Helical gold nanotube film as stretchable micro/nanoscale strain sensor. J Mater Sci 2018; 53:2181-2192. https://doi.org/10.1007/s10853-017-1660-y

Li C, Pan L, Deng C, Wang P. CNC-Al2O3-Ti: a new unit for micro scale strain sensing. Rsc Adv 2016; 6: 107683-107688. https://doi.org/10.1039/C6RA22361C

Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Min H, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 2011; 23(37): 4248-4253. https://doi.org/10.1002/adma.201102306

Zhang C, Kremer K, Seral‐Ascaso A, Park S, Mcevoy N, Anasori B, et al. Stamping of Flexible, Coplanar Micro‐Supercapacitors Using MXene Inks. Adv Func Mater 2021; 31. https://doi.org/10.1002/adfm.202008795

Yang X, Wang Q, Zhu K, Ye K, Yan J. 3D Porous Oxidation resistant MXene/Graphene Architectures Induced by In Situ Zinc Template toward High㏄erformance Supercapacitors. Adv Funct Mater 2021; 31(20): 2101087. https://doi.org/10.1002/adfm.202101087

Sun R, Zhang H, Liu J, Xie X, Yang R, Li Y, et al. Highly Conductive Transition Metal Carbide/Carbonitride(MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding. Adv Funct Mater 2017; 27(45):1702087. https://doi.org/10.1002/adfm.201702807

Zhao S, Zhang H, Luo J, Wang Q, Xu B, Hong S, Yu Z. Highly Electrically Conductive Three-Dimensional Ti3C2Tx MXene/Reduced Graphene Oxide Hybrid Aerogels with Excellent Electromagnetic Interference Shielding Performances. Acs Nano 2018; 12(11):11193-11202. https://doi.org/10.1021/acsnano.8b05739

Lee K, Zhang Y, Jiang Q, Kim H, Alkenawi A, Alshareef H. Ultrasound-Driven Two-Dimensional Ti3C2Tx MXene Hydrogel Generator. ACS Nano 2020;14(3):3199-3207. https://doi.org/10.1021/acsnano.9b08462

L. Hu, M. Li, X. Wei, H. Wang, C. Zhu, Modulating Interfacial Electronic Structure of CoNi LDH Nanosheets with Ti3C2T MXene for Enhancing Water Oxidation Catalysis, Chem Engn J 2020;398:125605. https://doi.org/10.1016/j.cej.2020.125605

Liu C, Li E. Termination Effects of Pt/v-Ti n+1CnT2 MXene Surfaces for Oxygen Reduction Reaction Catalysis. ACS Appl Mater Interfaces 2019; 11(1):1638-1644. https://doi.org/10.1021/acsami.8b17600

Li S, Yu Z, Guo B, Guo K, Li Y, Gong L, et al. Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2TX MXene hydrogels for wide-temperature strain sensing. Nano Energy 2021; 90:106502. https://doi.org/10.1016/j.nanoen.2021.106502

Sharma S, Chhetry A, Zhang S, Yoon H, Park J. Hydrogen-Bond-Triggered Hybrid Nanofibrous Membrane-Based Wearable Pressure Sensor with Ultrahigh Sensitivity over a Broad Pressure Range. ACS Nano 2021; 15(3):4380-4393. https://doi.org/10.1021/acsnano.0c07847

Wu M, He M, Hu Q, Wu Q, Zhou A. Ti3C2 MXene-Based Sensors with High Selectivity for NH3 Detection at Room Temperature. ACS Sens 2019; 4(10):2763-2770. https://doi.org/10.1021/acssensors.9b01308

Park T, Yu S, Koo M, Kim H, Kim E, Park J, et al. Shape-Adaptable 2D Titanium Carbide (MXene) Heater. ACS Nano 2019;13(6):6835. https://doi.org/10.1021/acsnano.9b01602

Chen J, Li Z, Ni F, Ouyang W, Fang X. Bio-inspired transparent MXene electrodes for flexible UV photodetector. Mater Horiz 2020; 7(7):1828-1833. https://doi.org/10.1039/D0MH00394H

Guo J, Wang X, Wang T. Thermal characterization of microscale conductive and nonconductive wires using transient electrothermal technique. J Appl Phys 2007; 101: 063537. https://doi.org/10.1063/1.2714679

Liu J, Qu W, Xie Y, Zhu B, Wang X. Thermal conductivity and annealing effect on structure of lignin-based microscale carbon fibers. Carbon 2017; 121:35-47. https://doi.org/10.1016/j.carbon.2017.05.066

Xu Z, Wang X, Xie H. Promoted electron transport and sustained phonon transport by DNA down to 10 K. Polymer 2014;55(24): 6373-6380. https://doi.org/10.1016/j.polymer.2014.10.016

Deng C, Sun Y, Pan L, Wang T, Xie Y, Liu J, et al. Thermal Diffusivity of Single Carbon Nanocoil: Uncovering the Correlation with Temperature and Domain Size. ACS Nano 2016; 10(10): 9710-9719. https://doi.org/10.1021/acsnano.6b05715

Zhao Y, Wang J, Huang H, Cong T, Pan L. Growth of Carbon Nanocoils by Porous α-Fe2O3/SnO2 Catalyst and Its Buckypaper for High Efficient Adsorption. Nano-Micro Lett 2020; 12(1):23. https://doi.org/10.1007/s40820-019-0365-y

Zhao X, Wang L, Tang C, Zha X, Yang W. Smart Ti3C2Tx MXene Fabric with Fast Humidity Response and Joule Heating for Healthcare and Medical Therapy Applications. ACS Nano 2020; 14(7): 8793-8805. https://doi.org/10.1021/acsnano.0c03391

Sarycheva A, Gogotsi Y. Raman spectroscopy analysis of structure and surface chemistry of Ti3 C2Tx MXene. Chem Mater 2020; 32(8):3480-3488. https://doi.org/10.1021/acs.chemmater.0c00359

Ferrari A. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys Rev. B, Cond Matt 2000; 61(20). https://doi.org/10.1103/PhysRevB.61.14095

Deng C, Pan L, Ma H, Cui R. Electromechanical vibration of carbon nanocoils. Carbon 2015; 81: 758-766. https://doi.org/10.1016/j.carbon.2014.10.019

Li L, Cao Y, Liu X, Wang J, Wang W. Multifunctional MXene-Based Fire-Proof Electromagnetic Shielding Films with Exceptional Anisotropic Heat Dissipation Capability and Joule Heating Performance. ACS Appl Mater Interfaces 2020; 12(24): 27350-27360. https://doi.org/10.1021/acsami.0c05692

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Yeti Li, Fengming Wu, Siqi Zhao, Chenghao Deng