Brief History, Design Innovations, Sustainability, and the Future Prospects of Aquaponics: A Review
Abstract - 0
PDF

Keywords

Biofiltration
Automation
Sustainability
Water quality
Marine aquaponics
Internet of Things (IoT)

How to Cite

1.
Pascual CS, Hall SG. Brief History, Design Innovations, Sustainability, and the Future Prospects of Aquaponics: A Review. Glob. J. Agric. Innov. Res. Dev [Internet]. 2025 Oct. 3 [cited 2025 Oct. 4];12:12-26. Available from: https://www.avantipublishers.com/index.php/gjaird/article/view/1624

Abstract

The rising demand for food due to the increasing population is one of the world's major issues. It is aggravated by the decreasing area for food production due to land conversion and the effects of climate change that threaten food security. Thus, alternative methods for producing more food efficiently and sustainably have been the focus recently. Aquaponics is a promising food production technology that combines fish and plants within a single system. Among the existing techniques, the recirculating aquaponics system, or RAS, is one of the most sophisticated land-based aquaculture production systems, integrating hydroponics to promote the reuse and recycling of nutrient-rich water while maintaining high-quality fish and plants. Aquaponics originated from traditional practices that utilized abundant natural resources. Modern developments have evolved from small, modular systems to medium- and large-scale, commercial designs, incorporating automation and the Internet of Things (IoT) to enhance efficiency and precision. This paper reviews the evolution of aquaponics, highlighting existing designs, innovations, and performance. Additionally, it explores future work in aquaponics aimed at improving profitability and sustainability.

https://doi.org/10.15377/2409-9813.2025.12.2
PDF

References

Jones S. Evolution of aquaponics. Aquaponics J. 2002; 6(1): 14-7.

MacKay KT. Rice-fish culture in China. Ottawa: IDRC; 1995. 277 p.

Sneed K, Allen K, Ellis JE. Fish farming and hydroponics. Aquac Fish Farmer. 1975; 1(1): 11,18-20.

Naegel LCA. Combined production of fish and plants in recirculating water. Aquaculture. 1977; 10(1): 17-24. https://doi.org/10.1016/0044-8486(77)90029-1

Lewis WM, Yopp JH, Schramm HL Jr, Brandenburg AM. Use of hydroponics to maintain quality of recirculated water in a fish culture system. Trans Am Fish Soc. 1978; 107(1): 92-9. https://doi.org/10.1577/1548-8659(1978)107<92:UOHTMQ>2.0.CO;2

Nair A, Rakocy JE, Hargreaves JA. Water quality characteristics of a closed recirculating system for tilapia culture and tomato hydroponics. In: Proc II International Conference on Warm Water Aquaculture – Finfish. Laie (HI); 1985. p. 5-8.

Rakocy JE, editor. Aquaponics: the integration of fish and vegetable culture in recirculating systems. 1994. P. 9.

Ebeling JM, Timmons MB. Recirculating aquaculture systems. In: Aquaculture production systems. 2012. p. 245-77. https://doi.org/10.1002/9781118250105.ch11

van Rijn J, Tal Y, Schreier HJ. Denitrification in recirculating systems: theory and applications. Aquac Eng. 2006; 34(3): 364-76. https://doi.org/10.1016/j.aquaeng.2005.04.004

Kyaw TY, Ng AK. Smart aquaponics system for urban farming. Energy Procedia. 2017; 143: 342-7. https://doi.org/10.1016/j.egypro.2017.12.694

Huang CC, Lu HL, Chang YH, Hsu TH. Evaluation of the water quality and farming growth benefits of an intelligence aquaponics system. Sustainability. 2021; 13(8): 4210. https://doi.org/10.3390/su13084210

Ren Q, Zhang L, Wei Y, Li D. A method for predicting dissolved oxygen in aquaculture water in an aquaponics system. Comput Electron Agric. 2018; 151: 384-91. https://doi.org/10.1016/j.compag.2018.06.013

Ahmed A, Zulfiqar S, Ghandar A, Chen Y, Hanai M, Theodoropoulos G. Digital twin technology for aquaponics: towards optimizing food production with dynamic data driven application systems. In: Tan G, Lehmann A, Teo YM, Cai W, editors. Methods and applications for modeling and simulation of complex systems. Singapore: Springer; 2019. p. 3-14. https://doi.org/10.1007/978-981-15-1078-6_1

Hu Z, Lee JW, Chandran K, Kim S, Brotto AC, Khanal SK. Effect of plant species on nitrogen recovery in aquaponics. Bioresour Technol. 2015; 188: 92-8. https://doi.org/10.1016/j.biortech.2015.01.013

Li G, Tao L, Li X, Peng L, Song C, Dai L, et al. Design and performance of a novel rice hydroponic biofilter in a pond-scale aquaponic recirculating system. Ecol Eng. 2018; 125: 1-10. https://doi.org/10.1016/j.ecoleng.2018.10.001

Endut A, Jusoh A, Ali N, Wan Nik WB, Hassan A. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresour Technol. 2010; 101(5): 1511-7. https://doi.org/10.1016/j.biortech.2009.09.040

Hasan Z, Dhahiyat Y, Andriani Y, Zidni I. Water quality improvement of Nile tilapia and catfish polyculture in aquaponics system. Nusantara Biosci. 2017; 9(1): 83-5. https://doi.org/10.13057/nusbiosci/n090114

Supajaruwong S, Satanwat P, Pungrasmi W, Powtongsook S. Design and function of a nitrogen and sediment removal system in a recirculating aquaculture system optimized for aquaponics. Environ Eng Res. 2021; 26(2): 1-9. https://doi.org/10.4491/eer.2019.494

Yamane K, Kimura Y, Takahashi K, Maeda I, Iigo M, Ikeguchi A, et al. The growth of leaf lettuce and bacterial communities in a closed aquaponics system with catfish. Horticulturae. 2021; 7(8): 222. https://doi.org/10.3390/horticulturae7080222

Al-Hafedh YS, Alam A, Alam MA. Performance of plastic biofilter media with different configuration in a water recirculation system for the culture of Nile tilapia (Oreochromis niloticus). Aquac Eng. 2003; 29(3): 139-54. https://doi.org/10.1016/S0144-8609(03)00065-7

Wrzaszcz W, Prandecki K. Agriculture and the European Green Deal. Probl Agric Econ Zagadn Ekon Rolnej. 2020; Available from: https://ageconsearch.umn.edu/record/311273

Love DC, Fry JP, Li X, Hill ES, Genello L, Semmens K, et al. Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture. 2015; 435: 67-74. https://doi.org/10.1016/j.aquaculture.2014.09.023

BIGH. The farm and its infrastructure. Available from: https://bigh.farm/en/the-farm-and-its-infastructure/ (Accessed on Jul 2025).

Proksch G, Ianchenko A, Kotzen B. Aquaponics in the built environment. In: Goddek S, Joyce A, Kotzen B, Burnell GM, Eds. Aquaponics food production systems: Combined aquaculture and hydroponic production technologies for the future. Cham: Springer International Publishing; 2019, p. 523-58. https://doi.org/10.1007/978-3-030-15943-6_21

ATOI. BIGH - "Ferme Abattoir" one of the biggest urban farms in Europe. Available from: https://www.atoi.org/news/4405/bigh-ferme-abattoir-one-of-the-biggest-urban-farms-in-europe/?utm_source=chatgpt.com (Accessed on Jul 2025).

EU Aquaponics Hub. Working Group 3. 2015. Available from: https://euaquaponicshub.wordpress.com/working-groups/working-group-3/ (Accessed on Jul 2025).

Wikipedia. Sustainable Technology Optimization Research Center, 2025. Available from: https://en.wikipedia.org/w/index.php?title=Sustainable_Technology_Optimization_Research_Center&oldid=1299011873 (Accessed on Jul 2025).

Danner RI, Mankasingh U, Anamthawat-Jonsson K, Thorarinsdottir RI. Designing aquaponic production systems towards integration into greenhouse farming. Water. 2019; 11(10): 2123. https://doi.org/10.3390/w11102123

Wikipedia. Growing Power, 2024. Available from: https://en.wikipedia.org/w/index.php?title=Growing_Power&oldid=1231047490 (Accessed on Jul 2025).

Wikipedia. Miami Science Barge, 2024. Available from: https://en.wikipedia.org/w/index.php?title=Miami_Science_Barge&oldid=1224401990 (Accessed on Jul 2025).

Boxman SE, Zhang Q, Bailey D, Trotz MA. Life cycle assessment of a commercial-scale freshwater aquaponic system. Environ Eng Sci. 2017; 34(5): 299-310. https://doi.org/10.1089/ees.2015.0510

Villarroel M, Junge R, Komives T, König B, Plaza I, Bittsánszky A, et al. Survey of aquaponics in Europe. Water. 2016; 8(10): 468. https://doi.org/10.3390/w8100468

Ako H. How to build and operate a simple small-to-large scale aquaponics system. Honolulu (HI): Center for Tropical and Subtropical Aquaculture, University of Hawaii at Manoa; 2014. Available from: https://www.researchgate.net/profile/Arvind-Singh-21/post/Aquapoinic-culture-system/attachment/5a07f2574cde262689144e79/AS%3A559766877736960%401510470231016/download/CTSA_aquaponicsHowTo.pdf (Accessed on March 19, 2025).

Goddek S, Keesman KJ. Improving nutrient and water use efficiencies in multi-loop aquaponics systems. Aquac Int. 2020; 28(6): 2481-90. https://doi.org/10.1007/s10499-020-00600-6

Kledal PR, Thorarinsdottir R. Aquaponics: A commercial niche for sustainable modern aquaculture. In: Hai FI, Visvanathan C, Boopathy R, Eds. Sustainable aquaculture. Cham: Springer International Publishing; 2018, p. 173-90. https://doi.org/10.1007/978-3-319-73257-2_6 (Accessed on March 19, 2025).

Lennard WA, Leonard BV. A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an aquaponic test system. Aquac Int. 2006; 14(6): 539-50. https://doi.org/10.1007/s10499-006-9053-2

Yep B, Zheng Y. Aquaponic trends and challenges: A review. J Clean Prod. 2019; 228: 1586-99. https://doi.org/10.1016/j.jclepro.2019.04.290

Goddek S, Körner O. A fully integrated simulation model of multi-loop aquaponics: A case study for system sizing in different environments. Agric Syst. 2019; 171: 143-54. https://doi.org/10.1016/j.agsy.2019.01.010

Lennard W, Ward J. A comparison of plant growth rates between an NFT hydroponic system and an NFT aquaponic system. Horticulturae. 2019; 5(2): 27. https://doi.org/10.3390/horticulturae5020027

Zhang Y, Zhang YK, Li Z. A new and improved aquaponics system model for food production patterns for urban architecture. J Clean Prod. 2022; 342: 130867. https://doi.org/10.1016/j.jclepro.2022.130867

Nghia NH, Van PT, Giang PT, Hanh NT, St-Hilaire S, Domingos JA. Control of Vibrio parahaemolyticus (AHPND strain) and improvement of water quality using nanobubble technology. Aquac Res. 2021; 52(6): 2727-39. https://doi.org/10.1111/are.15124

Seridou P, Kalogerakis N. Disinfection applications of ozone micro- and nanobubbles. Environ Sci Nano. 2021; 8(12): 3493-510. https://doi.org/10.1039/D1EN00700A

Kurita Y, Chiba I, Kijima A. Physical eradication of small planktonic crustaceans from aquaculture tanks with cavitation treatment. Aquac Int. 2017; 25(6): 2127-33. https://doi.org/10.1007/s10499-017-0179-1

Tsuge H. Characteristics of microbubbles. In: Micro- and nanobubbles: Fundamentals and applications. 2014. p. 978-81. https://doi.org/10.1201/b17278

Ebina K, Shi K, Hirao M, Hashimoto J, Kawato Y, Kaneshiro S, et al. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PLoS One. 2013; 8(6): e65339. https://doi.org/10.1371/journal.pone.0065339

Imaizumi K, Tinwongger S, Kondo H, Hirono I. Disinfection of an EMS/AHPND strain of Vibrio parahaemolyticus using ozone nanobubbles. J Fish Dis. 2018; 41(4): 725. https://doi.org/10.1111/jfd.12783

Dien LT, Linh NV, Mai TT, Senapin S, St-Hilaire S, Rodkhum C, et al. Impacts of oxygen and ozone nanobubbles on bacteriophage in aquaculture system. Aquaculture. 2022; 551: 737894. https://doi.org/10.1016/j.aquaculture.2022.737894

Boyd CE, Tucker CS, Viriyatum R. Interpretation of pH, acidity, and alkalinity in aquaculture and fisheries. N Am J Aquac. 2011; 73(4): 403-8. https://doi.org/10.1080/15222055.2011.620861

Boyd CE. pH, carbon dioxide, and alkalinity. In: Water quality. Cham: Springer; 2015. p. 153-78. https://doi.org/10.1007/978-3-319-17446-4_8

Park HJ, Kim JY, Kim J, Lee JH, Hahn JS, Gu MB, et al. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 2009; 43(4): 1027-32. https://doi.org/10.1016/j.watres.2008.12.002

Liltved H, Vogelsang C, Modahl I, Dannevig BH. High resistance of fish pathogenic viruses to UV irradiation and ozonated seawater. Aquac Eng. 2006; 34(2): 72-82. https://doi.org/10.1016/j.aquaeng.2005.05.002

Suhl J, Dannehl D, Kloas W, Baganz D, Jobs S, Scheibe G, et al. Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agric Water Manag. 2016; 178: 335-44. https://doi.org/10.1016/j.agwat.2016.10.013

Suhl J, Dannehl D, Zechmeister L, Baganz D, Kloas W, Lehmann B, et al. Prospects and challenges of double recirculating aquaponic systems (DRAPS) for intensive plant production. Acta Hortic. 2018; 1227: 449-56. https://doi.org/10.17660/ActaHortic.2018.1227.56

Forchino AA, Lourguioui H, Brigolin D, Pastres R. Aquaponics and sustainability: The comparison of two different aquaponic techniques using the life cycle assessment (LCA). Aquac Eng. 2017; 77: 80-8. https://doi.org/10.1016/j.aquaeng.2017.03.002

Goddek S, Delaide B, Mankasingh U, Ragnarsdottir KV, Jijakli H, Thorarinsdottir R. Challenges of sustainable and commercial aquaponics. Sustainability. 2015; 7(4): 4199-224. https://doi.org/10.3390/su7044199

Gibbons GM. An economic comparison of two leading aquaponic technologies using cost benefit analysis (master’s thesis). Logan (UT): Utah State University; 2020. Available from: https://search.proquest.com/openview/63af971870871d79247af7d50657604c/1 (accessed on Aug 27, 2025).

Debroy P, Majumder P, Majumdar P, Das A, Seban L. Analysis of opportunities and challenges of smart aquaponic system: A summary of research trends and future research avenues. Sustain Environ Res. 2025; 35(1): 18. https://doi.org/10.1186/s42834-025-00255-z

Hassoun A, Mhlanga D, Rejeb A, Bhat Z, Buheji M, Bigliardi B. Smart agricultural technology. 2025. Available from: https://www.researchgate.net/profile/Mohamed-Buheji/publication/391214871(accessed on Aug 27, 2025).

Owusu R, Mayoko JC, Lee JY. Prediction of water quality temperature in the growth pattern of fish (Nile tilapia) and plant (lettuce) in a prototype-safe, automated aquaponics environment using deep learning. Open Access Libr J. 2024; 11(9): 1-22. https://doi.org/10.4236/oalib.1111786

Sallenave R. Important water quality parameters in aquaponics systems. Las Cruces (NM): College of Agricultural, Consumer and Environmental Sciences; 2016.

Sulit MF, Agulto IC, Cinense MM. Rootzone cooling, water productivity and economics of intensified verticalgrown red butterhead lettuce (Lactuca sativa Linn). Food Res. 2023; 7(Suppl 2): 111-9. https://doi.org/10.26656/fr.2017.7(S2).12

Pascual C, Xiang L, Hall S, Hernandez R. Intermittent salt application enhances total soluble solids of strawberries (Fragaria × ananassa) in hydroponics. Discov Plants. 2025; 2(1): 133. https://doi.org/10.1007/s44372-025-00214-3

Haruo Y, Yamamoto H, Arakawa M, Naka I. Development and evaluation of environmental/growth observation sensor network system for aquaponics. In: 2020 IEEE International Conference on Consumer Electronics (ICCE). IEEE; 2020, p. 1-6. https://doi.org/10.1109/ICCE46568.2020.9043018

Diem TNT, Konnerup D, Brix H. Effects of recirculation rates on water quality and Oreochromis niloticus growth in aquaponic systems. Aquac Eng. 2017; 78: 95-104. https://doi.org/10.1016/j.aquaeng.2017.05.002

Setiadi E, Widyastuti YR, Prihadi TH. Water quality, survival, and growth of red tilapia, Oreochromis niloticus cultured in aquaponics system. In: E3S Web of Conferences. EDP Sciences; 2018, p. 02006. Available from: https://www.e3s-conferences.org/articles/e3sconf/abs/2018/22/e3sconf_scifimas2018_02006/e3sconf_scifimas2018_02006.html (accessed on March 19, 2025)

Paul D, Hall SG. Biochar and zeolite as alternative biofilter media for denitrification of aquaculture effluents. Water. 2021; 13(19): 2703. https://doi.org/10.3390/w13192703

Harwanto D, Oh SY, Jo JY. Comparison of the nitrification efficiencies of three biofilter media in a freshwater system. Fish Aquat Sci. 2011; 14(4): 363-9. https://doi.org/10.5657/FAS.2011.0363

Zhou X, Wang J, Xue L, Xu X, Yang L. N and P removal characters of eutrophic water body under planted float. Ying Yong Sheng Tai Xue Bao. 2005; 16(11): 2199-203.

Thongbai P, Ohyama K, Ozawa K, Shimoda Y, Takagaki M. Improving water quality by using plants with water convolvulus (Ipomoea aquatica Forsk.) as a model. In: International Workshop on Greenhouse Environmental Control and Crop Production in Semi-Arid Regions 797. 2008, p. 455-60. https://doi.org/10.17660/ActaHortic.2008.797.66

Hu MH, Ao YS, Yang XE, Li TQ. Treating eutrophic water for nutrient reduction using an aquatic macrophyte (Ipomoea aquatica Forsskal) in a deep flow technique system. Agric Water Manag. 2008; 95(5): 607-15. https://doi.org/10.1016/j.agwat.2008.01.001

Avnimelech Y. Bio-filters: The need for a new comprehensive approach. Aquac Eng. 2006; 34(3): 172-8. https://doi.org/10.1016/j.aquaeng.2005.04.001

Barbosa PTL, Povh JA, Farias KNN, da Silva TV, Teodoro GC, Ribeiro JS, et al. Nile tilapia production in polyculture with freshwater shrimp using an aquaponic system and biofloc technology. Aquaculture. 2022; 551: 737916. https://doi.org/10.1016/j.aquaculture.2022.737916

Somerville C, Cohen M, Pantanella E, Stankus A, Lovatelli A. Small-scale aquaponic food production: Integrated fish and plant farming. FAO Fish Aquac Tech Pap. 2014; (589): I–XIV,1-247.

Rakocy JE. Integrating tilapia culture with vegetable hydroponics in recirculating systems. In: Tilapia aquaculture in the Americas. 1997; 1: 163-84.

Kloas W, Groß R, Baganz D, Graupner J, Monsees H, Schmidt U, et al. A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquac Environ Interact. 2015; 7(2): 179-92. https://doi.org/10.3354/aei00146

Tyson RV, Treadwell DD, Simonne EH. Opportunities and challenges to sustainability in aquaponic systems. HortTechnology. 2011; 21(1): 6-13. https://doi.org/10.21273/HORTTECH.21.1.6

Birolo M, Bordignon F, Trocino A, Fasolato L, Pascual A, Godoy S, et al. Effects of stocking density on the growth and flesh quality of rainbow trout (Oncorhynchus mykiss) reared in a low-tech aquaponic system. Aquaculture. 2020; 529: 735653. https://doi.org/10.1016/j.aquaculture.2020.735653

Ellis T, North B, Scott AP, Bromage NR, Porter M, Gadd D. The relationships between stocking density and welfare in farmed rainbow trout. J Fish Biol. 2002; 61(3): 493-531. https://doi.org/10.1111/j.1095-8649.2002.tb00893.x

Ashley PJ. Fish welfare: Current issues in aquaculture. Appl Anim Behav Sci. 2007; 104(3-4): 199-235. https://doi.org/10.1016/j.applanim.2006.09.001

Seo J, Park J. Does stocking density affect growth performance and hematological parameters of juvenile olive flounder Paralichthys olivaceus in a recirculating aquaculture system? Animals (Basel). 2022; 13(1): 44. https://doi.org/10.3390/ani13010044

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Christopher S. Pascual, Steven G. Hall

Downloads

Download data is not yet available.