Derivation of a Cropping System Transfer Function for Weed Management: Part 1 – Herbicide Weed Management
PDF

Keywords

System analysis
weeds
herbicide
herbicide resistance
crop ecology.

How to Cite

1.
Graham Brodie. Derivation of a Cropping System Transfer Function for Weed Management: Part 1 – Herbicide Weed Management . Glob. J. Agric. Innov. Res. Dev [Internet]. 2014 Nov. 27 [cited 2022 May 21];1(1):11-6. Available from: https://www.avantipublishers.com/index.php/gjaird/article/view/102

Abstract

System behaviour is described by the transfer functions, which relate the system’s output to one or more input variables. No-till cropping systems depend on herbicide inputs for weed management and crop yield optimisation. This paper derives the transfer function for crop yield potential as a function of herbicide input, in the presence of herbicide resistance in the weed population, using several mathematical components for crop and weed ecology from published literature. The resulting transfer function reveals the herbicide application rate for optimal crop yield potential and highlights the growing herbicide resistance problem in no-till cropping systems.

https://doi.org/10.15377/2409-9813.2014.01.01.2
PDF

References

Åström KJ, Murray RM. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press: Princeton. New Jersey 2012.

Mondani F, Golzardi F, Ahmadvand G, Ghorbani R, Moradi R. Influence of Weed Competition on Potato Growth. Production and Radiation Use Efficiency. Notulae Scientia Biologicae 2011; 3(3): 42-52.

Cathcart RJ, Swanton CJ. Nitrogen management will influence threshold values of green foxtail (Setaria viridis) in corn. Weed Science 2003; 51(6): 975-986. http://dx.doi.org/10.1614/P2002-145

Heap IM. The occurrence of herbicide-resistant weeds worldwide. Pesticide Science 1997; 51(3): 235-243. http://dx.doi.org/10.1002/(SICI)1096- 9063(199711)51:3<235::AID-PS649>3.0.CO;2-N

Owen M, Walsh M, Llewellyn R, Powles S. Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Australian Journal of Agricultural Research 2007; 58(7): 711- 718. http://dx.doi.org/10.1071/AR06283

Schmidt CP, Pannell DJ. Economic Issues in Management of Herbicide-Resistant Weeds. Research in Agricultural and Applied Economics 1996; 64(3): 301-308.

Cousens R, Brain P, O'Donovan JT, O'Sullivan PA. The use of biologically realistic equations to describe the effects of weed density and relative time of emergence on crop yield. Weed science (USA) 1987;

Bosnić AČ, Swanton CJ. Economic Decision Rules for Postemergence Herbicide Control of Barnyardgrass (Echinochloa crus-galli) in Corn (Zea mays). Weed Science 1997; 45(4): 557-563.

Neve P, Norsworthy JK, Smith KL, Zelaya IA. Modelling evolution and management of glyphosate resistance in Amaranthus palmeri. Weed Research 2011; 51(2): 99-112. http://dx.doi.org/10.1111/j.1365-3180.2010.00838.x

Gubbins S, Gilligan CA. Invasion Thresholds for Fungicide Resistance: Deterministic and Stochastic Analyses. Proceedings: Biological Sciences 1999; 266(1437): 2539- 2549. http://dx.doi.org/10.1098/rspb.1999.0957

Yin XL, Jiang L, Song NH, Yang H. Toxic Reactivity of Wheat (Triticum aestivum) Plants to Herbicide Isoproturon. Journal of Agricultural and Food Chemistry 2008; 56(12): 4825-4831. http://dx.doi.org/10.1021/jf800795v

Pekrun C, Lane PW, Lutman PJW. Modelling seedbank dynamics of volunteer oilseed rape (Brassica napus). Agricultural Systems 2005; 84 (1): 1-20. http://dx.doi.org/10.1016/j.agsy.2004.06.007

Bagavathiannan MV, Begg GS, Gulden RH, Van Acker RC. Modelling the Dynamics of Feral Alfalfa Populations and Its Management Implications. PLoS ONE 2012; 7(6): 1-10. http://dx.doi.org/10.1371/journal.pone.0039440

Heap IM. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/in.asp. (accessed 25th September 2008).

Thornby DF, Walker SR. Simulating the evolution of glyphosate resistance in grains farming in northern Australia. Annals Of Botany 2009; 104(4): 747-756. http://dx.doi.org/10.1093/aob/mcp152

Baucom RS, Mauricio R. Fitness costs and benefits of novel herbicide tolerance in a noxious weed. Proceedings of the National Academy of Sciences of the United States of America 2004; 101(36): 13386-13390. http://dx.doi.org/10.1073/pnas.0404306101

Broster JC, Pratley JE. A decade of monitoring herbicide resistance in Lolium rigidum in Australia. Australian Journal of Experimental Agriculture 2006; 46 (9): 1151-1160. http://dx.doi.org/10.1071/EA04254

Gill GS, Holmes JE. Efficacy of cultural control methods for combating herbicide-resistant Lolium rigidum. Pesticide Science 1997; 51(3): 352-358. http://dx.doi.org/10.1002/(SICI)1096- 9063(199711)51:3<352::AID-PS648>3.0.CO;2-M

Kuk YI, Burgos NR, Talbert RE. Cross- and multiple resistance of diclofop-resistant Lolium spp. Weed Science 2000; 48(4): 412-419. http://dx.doi.org/10.1614/0043- 1745(2000)048[0412:CAMRODRL]2.0.CO;2

Walsh MJ, Powles SB, Beard BR, Parkin BT, Porter SA. Multiple-Herbicide Resistance across Four Modes of Action in Wild Radish (Raphanus raphanistrum). Weed Science 2004; 52(1): 8-13. http://dx.doi.org/10.1614/WS-03-016R

Yu Q, Cairns A, Powles S. Glyphosate paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta 2007; 225(2): 499-513. http://dx.doi.org/10.1007/s00425-006-0364-3

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2014 Global Journal of Agricultural Innovation, Research & Development