Global Warming and Loss of Bearing Capacity of Permafrost: An Experimental Study on the Effects of Freezing/Thawing Cycles on a Silty Soil
PDF

Keywords

Thawing
Freezing
Silty soil
Permafrost
Shear test
Oedometric test

How to Cite

1.
Howald EP, Torche J. Global Warming and Loss of Bearing Capacity of Permafrost: An Experimental Study on the Effects of Freezing/Thawing Cycles on a Silty Soil. Glob. J. Earth Sci. Eng. [Internet]. 2020Aug.4 [cited 2022Jan.16];7(1):1-21. Available from: https://www.avantipublishers.com/jms/index.php/gjese/article/view/1199

Abstract

One of the major effects of global warming is the thawing of permafrost. This phenomenon has several consequences on the affected environments, such as the loss of soil bearing capacity, the beginning of the seasonal cycles of freezing/thawing and an increase in the frequency of occurrence of natural hazards.
This paper focuses on the loss of soil bearing capacity. A preliminary experimental study was carried out to understand and quantify the changes in the behaviour of a silty soil subjected to a freezing / thawing cycle through a series of laboratory tests. After the soil used for the lab tests was characterised, many shear tests and oedometric tests were performed before, during and after freezing. The geotechnical parameters were deduced from the oedometric curves and Mohr-Coulomb diagrams obtained. The comparison of the results made it possible to observe the evolution of the soil parameters, i.e. the internal friction angle, the cohesion, and the oedometric curves.
All tests were carried out according to Swiss standards for laboratory testing

PDF

References

Dysli M. Swiss philosophy and developments concerning the loss of bearing capacity during thaw, Lausanne: Soil mechanics laboratory Swiss Federal Institute of Technology, 1982.

Dysli M. Le gel et son action sur les sols de fondations, Lausanne: Presses polytechniques et universitaires romandes, 1991.

Dysli M. Etude expérimentale du dégel d'un limon argileux. Application aux chaussées et pergélisols alpins, Lausanne, 2007.

Swan CW, Grant A, Kody A. Characteristics of Chicago Blue Clay subjected to a freeze-thaw cycle. In Mechanical properties of frozen soils, H. Zubeck and Z. Yang, Eds., West Conshohocken : ASTM International, 2013; pp. 22-32. https://doi.org/10.1520/STP156820130015

Chamberlain EJ. A freeze-thaw test to determine the frost susceptibility of soils, Hanover: US Army, Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1987.

Qi J, Vermeer PA, Cheng G. A review of the influence of freeze-thaw cycles on soil geotechnical properties,” Permafrost and Periglacial Proc. 2006;17: pp. 245-252. https://doi.org/10.1002/ppp.559

Bigl SR, Shoop SA. Soil moisture prediction during freeze and thaw using a coupled heat and moisture flow model. Hanover, New Hampshire : US Army, Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1994.

Steiner A, Vardon PJ, Borere W. The influence of freeze-thaw cycles on the shear strength of illite clay. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, February 2018; pp. 16-27. https://doi.org/10.1680/jgeen.16.00101

C. VSS, SN 670 345b, Zürich: Association Suisse des professionnels de la route et des transports, 2008.

C. VSS, SN 670 330-2, Zürich: Association Suisse des professionnels de la route et des transports, 2015.

C. VSS, SN 670 340-10, Zürich: Association Suisse des professionnels de la route et des transports, 2008.

C. VSS, SN 670 340-2, Zürich: Association Suisse des professionnels de la route et des transports, 2008.

C. VSS, SN 670 340-5, Zürich: Association Suisse des professionnels de la route et des transports, 2008.

C. VSS, SN 670 816a, Zürich: Association Suisse des professionnels de la route, 1990.

C. VSS, SN 670 902-1b, Zürich: Association Suisse des professionnels de la route et des transports, 2007.

C. VSS, SN 70 140b, Zürich: Association Suisse des professionnels de la route et des transports, 2019.

van Huissteden J. Thawing Permafrost, Springer International Publishing, 2020. https://doi.org/10.1007/978-3-030-31379-1

Yamamoto Y. Instabilities in alpine permafrost: strength and stiffness in a warming regime, Regime Band 2014; 243.

Nötzli J. Modeling transient three-dimensional temperature fields in mountain permafrost, Zürich: Geographisches Institut der Universität Zürich, 2011.

Harris SA, Brouchkov A, Guodong C. Geocryology : characteristics and use of frozen ground and permafrost landforms, Boca Raton : CRC Press, 2018. https://doi.org/10.4324/9781315166988

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.