Photocatalytic Reduction of Cr(VI) and Degradation of Organic Pollutants by Z-Scheme g-C3N4/Bi2S3 Heterojunction
Abstract - 314
PDF

Keywords

g-C3N4/Bi2S3
Photocatalysis
Cr(VI) reduction
Organic pollutant
Z-scheme heterojunction

How to Cite

1.
Ding L, Deng Y, Liu X, Liu L, Ding J, Deng F. Photocatalytic Reduction of Cr(VI) and Degradation of Organic Pollutants by Z-Scheme g-C3N4/Bi2S3 Heterojunction. J. Chem. Eng. Res. Updates. [Internet]. 2022 Mar. 23 [cited 2024 Apr. 25];9:1-12. Available from: https://www.avantipublishers.com/index.php/jceru/article/view/1180

Abstract

Photocatalytic reduction of hexavalent Cr(VI) couping oxidative degradation of organic contamination is an emerging and practical approach for water treatment. In this study, Z-scheme g-C3N4/Bi2S3 heterojunctions with intimate interface were successfully synthesized by direct growth of Bi2S3 on g-C3N4 surface. Notably, the photocatalytic performance of Z-scheme g-C3N4/Bi2S3 was influenced by g-C3N4 content. The optimized 2% g-C3N4/Bi2S3 heterojunction shows the highest photocatalytic reduction performance with 93.4% reduction efficiency of Cr(VI) under UV-visible light due to efficient separation and transfer of charge carriers and proper band structure. Furthermore, 2% g-C3N4/Bi2S3 can degrade tetracycline and Rhodamine B. Free radical capturing and quantitative tests indicate that holes and superoxide radicals are primary active species for the degradation of organic pollutants, while Cr(VI) was reduced to Cr(III) by the photogenerated electrons. Overall, this study provides new insight into the synthesis of high-performance Z-scheme heterojunctions for the future advancement of photocatalysis technology.

https://doi.org/10.15377/2409-983X.2022.09.1
PDF

References

Peng Y, Huang H, Zhang Y, Kang C, Chen S, Song L, et al. A versatile MOF-based trap for heavy metal ion capture and dispersion, Nat. Commun. 2018; 9(1): 187. https://doi.org/10.1038/s41467-017-02600-2

Islam M.S, Ahmed M.K, Raknuzzaman M, Habibullah -Al- Mamun M, Islam M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country, Ecol. Indicators 2015; 48: 282-291. https://doi.org/10.1016/j.ecolind.2014.08.016

Pushkar B, Sevak P, Parab S, Nilkanth N. Chromium pollution and its bioremediation mechanisms in bacteria: A review, J. Environ. Manage. 2021; 287: 112279. https://doi.org/10.1016/j.jenvman.2021.112279

Bolisetty S, Peydayesh M, Mezzenga R. Sustainable technologies for water purification from heavy metals: review and analysis, Chem. Soc. Rev. 2019; 48(2): 463-487. https://doi.org/10.1039/C8CS00493E

Yuan P, Fan M, Yang D, He H, Liu D, Yuan A, et al. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions, J. Hazard. Mater. 2009; 166(2): 821-829. https://doi.org/10.1016/j.jhazmat.2008.11.083

de Bittencourt M.A, Novack A.M, Scherer Filho J.A, Mazur L.P, Marinho B.A, da Silva A, et al. Application of FeCl3 and TiO2-coated algae as innovative biophotocatalysts for Cr(VI) removal from aqueous solution: A process intensification strategy, J. Cleaner Prod. 2020; 268: 122164. https://doi.org/10.1016/j.jclepro.2020.122164

Kumar V, Singh V, Kim K.-H, Kwon E.E, Younis S.A. Metal-organic frameworks for photocatalytic detoxification of chromium and uranium in water, Coord. Chem. Rev. 2021; 447. https://doi.org/10.1016/j.ccr.2021.214148

Cui W.R, Li F.F, Xu R.H, Zhang C.R, Chen X.R, Yan R.H, et al. Regenerable covalent organic frameworks for photo-enhanced uranium adsorption from seawater, Angew. Chem. Int. Ed. 2020; 59(40): 17684-17690. https://doi.org/10.1002/anie.202007895

Liu F, Ma Z, Deng Y, Wang M, Zhou P, Liu W, et al. Tunable covalent organic frameworks with different heterocyclic nitrogen locations for efficient Cr(VI) reduction, Escherichia coli disinfection, and paracetamol degradation under visible-Light irradiation, Environ. Sci. Technol. 2021; 55: 5371-5381. https://doi.org/10.1021/acs.est.0c07857

Kato H, Kudo A. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium, J. Phys. Chem. B 2002; 106: 5029-5034. https://doi.org/10.1021/jp0255482

Testa JJ, Grela M.A, Litter M.I. Heterogeneous photocatalytic reduction of chromium(VI) over TiO2 particles in the presence of oxalate: involvement of Cr(V) species, Environ. Sci. Technol. 2004; 38: 1589-1594. https://doi.org/10.1021/es0346532

Repo E, Rengaraj S, Pulkka S, Castangnoli E, Suihkonen S, Sopanen M, et al. Photocatalytic degradation of dyes by CdS microspheres under near UV and blue LED radiation, Sep. Purif. Technol. 2013; 120: 206-214. https://doi.org/10.1016/j.seppur.2013.10.008

Zhou R, Zhou R, Alam D, Zhang T, Li W, Xia Y, et al. Plasmacatalytic bubbles using CeO2 for organic pollutant degradation, Chem. Eng. J. 2021; 403: 126413. https://doi.org/10.1016/j.cej.2020.126413

Yu J, Kudo A. Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4, Adv. Funct. Mater. 2006; 16: 2163-2169. https://doi.org/10.1002/adfm.200500799

Bhatkhande D.S, Pangarkar V.G, Beenackers A.A.C.M. Photocatalytic degradation for environmental applications - a review, J. Chem. Technol. Biotechnol. 2002; 77: 102-116. https://doi.org/10.1002/jctb.532

Chen F, Cao Y, Jia D. Facile synthesis of Bi2S3 hierarchical nanostructure with enhanced photocatalytic activity, J. Colloid Interface Sci. 2013; 404: 110-116. https://doi.org/10.1016/j.jcis.2013.04.013

Shao B, Liu X, Liu Z, Zeng G, Liang Q, Liang C, et al. A novel double Z-scheme photocatalyst Ag3PO4/Bi2S3/Bi2O3 with enhanced visible-light photocatalytic performance for antibiotic degradation, Chem. Eng. J. 2019;368: 730-745. https://doi.org/10.1016/j.cej.2019.03.013

Ou J.-H, Sheu Y.-T, Tsang D.C.W, Sun Y.-J, Kao C.-M. Application of iron/aluminum bimetallic nanoparticle system for chromium-contaminated groundwater remediation, Chemosphere 2020; 256: 127158. https://doi.org/10.1016/j.chemosphere.2020.127158

Sang Y, Cao X, Dai G, Wang L, Peng Y, Geng B. Facile one-pot synthesis of novel hierarchical Bi2O3/Bi2S3 nanoflower photocatalyst with intrinsic p-n junction for efficient photocatalytic removals of RhB and Cr(VI), J. Hazard. Mater. 2020; 381: 120942. https://doi.org/10.1016/j.jhazmat.2019.120942

Wang S, Li X, Chen Y, Cai X, Yao H, Gao W, et al. A facile one-Pot synthesis of a two-dimensional MoS2/Bi2S3 composite theranostic nanosystem for multi-modality tumor imaging and therapy, Adv. Mater. 2015; 27: 2775-2782. https://doi.org/10.1002/adma.201500870

Fu J, Yu J, Jiang C, Cheng B. g-C3N4-based heterostructured photocatalysts, Adv. Energy Mater. 2018; 8(3): 1701503. https://doi.org/10.1002/aenm.201701503

Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging, J. Am. Chem. Soc. 2013; 135: 18-21. https://doi.org/10.1021/ja308249k

Ye L, Liu J, Jiang Z, Peng T, Zan L. Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity, Appl. Catal. B: Environ. 2013; 142-143: 1-7. https://doi.org/10.1016/j.apcatb.2013.04.058

Chai B, Yan J, Wang C, Ren Z, Zhu Y. Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride, Appl. Surf. Sci. 2017; 391: 376-383. https://doi.org/10.1016/j.apsusc.2016.06.180

Deng Y, Tang L, Zeng G, Zhu Z, Yan M, Zhou Y, et al. Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: Performance and reaction mechanism, Appl. Catal. B: Environ. 2017; 203: 343-354. https://doi.org/10.1016/j.apcatb.2016.10.046

Lei C, Wang C, Chen W, He M, Huang B. Polyaniline@magnetic chitosan nanomaterials for highly efficient simultaneous adsorption and in-situ chemical reduction of hexavalent chromium: Removal efficacy and mechanisms, Sci. Total Environ. 2020; 733: 139316. https://doi.org/10.1016/j.scitotenv.2020.139316

Zhu Y.P, Ren T.Z, Yuan Z.Y. Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance, ACS Appl. Mater. Interf. 2015; 7: 16850-16856. https://doi.org/10.1021/acsami.5b04947

Hu X, Deng F, Huang W, Zeng G, Luo X, Dionysiou D.D. The band structure control of visible-light-driven rGO/ZnS-MoS2 for excellent photocatalytic degradation performance and long-term stability, Chem. Eng. J. 2018; 350: 248-256. https://doi.org/10.1016/j.cej.2018.05.182

Shi L, Yang L, Zhou W, Liu Y, Yin L, Hai X, et al. Photoassisted construction of holey defective g-C3N4 photocatalysts for efficient visible-light-driven H2O2 production, Small 2018; 14: 1703142. https://doi.org/10.1002/smll.201703142

Nosaka Y, Nosaka A. Understanding hydroxyl radical (•OH) generation processes in photocatalysis, ACS Energy Lett. 2016; 1: 356-359. https://doi.org/10.1021/acsenergylett.6b00174

Chu C.-Y, Huang M.H. Facet-dependent photocatalytic properties of Cu2O crystals probed by using electron, hole and radical scavengers, J. Mater. Chem. A 2017; 5: 15116-15123. https://doi.org/10.1039/C7TA03848H

Nosaka Y, Nosaka A.Y. Generation and detection of reactive oxygen species in photocatalysis, Chem. Rev. 2017; 117: 11302-11336. https://doi.org/10.1021/acs.chemrev.7b00161

Huang H, Tu S, Zeng C, Zhang T, Reshak A.H, Zhang Y. Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation, Angew. Chem. Int. Ed. 2017; 56: 11860-11864. https://doi.org/10.1002/anie.201706549

Xu Q, Zhang L, Yu J, Wageh S, Al-Ghamdi A.A, Jaroniec M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications, Mater. Today 2018; 21(10): 1042-1063. https://doi.org/10.1016/j.mattod.2018.04.008

Nakada A, Kuriki R, Sekizawa K, Nishioka S, Vequizo J.J.M, Uchiyama T, et al. Effects of interfacial electron transfer in metal complex-semiconductor hybrid photocatalysts on Z-scheme CO2 reduction under visible light, ACS Catal. 8: 2018; 9744-9754. https://doi.org/10.1021/acscatal.8b03062

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Lin Ding, Ying Deng, Xinggang Liu, Lingling Liu, Jingjing Ding, Fang Deng