Abstract
The rising demand for diesel fuel amidst declining fossil reserves, volatile oil prices, and stringent emission regulations has driven the expansion of biodiesel production. Biodiesel, primarily produced as fatty acid alkyl esters via catalytic transesterification of triglycerides, offers advantages over fossil diesel, including environmental friendliness, non-toxicity, and enhanced lubricity. However, its limited oxidation stability, energy density, and cold flow properties restrict blending ratios with conventional diesel to prevent engine performance issues. Alternative methods, such as hydrotreated vegetable oils (HVOs), face challenges related to hydrogen dependency and cost. This review explores current biomass-derived diesel production methods and proposes a cost-effective strategy for industrial-scale biodiesel with improved stability, energy content, and cold flow characteristics. This approach aims to enable higher blending ratios with mineral diesel, reducing dependency on finite fossil resources while promoting cleaner, renewable energy use.
References
De Goede S, Wilken C, Ajam M, Roets P, Engelbrecht P, Woolard C, et al. A comparison of the stability performance of blends of paraffinic diesel and petroleum-derived diesel with RME biodiesel using laboratory stability measurement techniques. J Chem. 2015; 2015: 1-8. https://doi.org/10.1155/2015/528497
Chikati R, Okonye L, Nkazi D, Gorimbo JCommercial Technologies for Biodiesel Production. In Biodiesel Technology and Applications (eds Inamuddin, M.I. Ahamed, R. Boddula and M. Rezakazemi), Scrivener Publishing, 2021; (pp.195-213) Wiley, https://doi.org/10.1002/9781119724957.ch6
Banković-Ilić IB, Miladinović MR, Stamenković OS, Veljković VB. Application of nano CaO-based catalysts in biodiesel synthesis. Renew Sustain Energy Rev. 2017; 72: 746-60. https://doi.org/10.1016/j.rser.2017.01.076
Kumar D, Singh B, Korstad J. Utilization of lignocellulosic biomass by oleaginous yeast and bacteria for production of biodiesel and renewable diesel. Renew Sustain Energy Rev. 2017; 73: 654-71. https://doi.org/10.1016/j.rser.2017.01.022
Damanik N, Ong HC, Tong CW, Mahlia TMI, Silitonga AS. A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends. Environ Sci Pollut Res Int. 2018; 25(16): 15307-25. https://doi.org/10.1007/s11356-018-2098-8
Chikati C, Otun KO, Nkazi D, Gorimbo J. Non-Edible Feedstock for Biodiesel Production. In: Inamuddin, Ahamed MI, Boddula R, Rezakazemi M, Eds. Biodiesel Technology and Applications. Scrivener Publishing; 2021, pp. 283- 302. https://doi.org/10.1002/9781119724957.ch10
Bagchi SK, Rao PS, Mallick N. Development of an oven drying protocol to improve biodiesel production for an indigenous chlorophycean microalga Scenedesmus sp. Bioresour Technol. 2015; 180: 207-13. https://doi.org/10.1016/j.biortech.2014.12.092
Liu T, Yang W, Hui A, Cai H. Development of a skeletal mechanism for biodiesel blend surrogates with varying fatty acid methyl esters proportion. Appl Energy. 2016; 162: 278-88. https://doi.org/10.1016/j.apenergy.2015.10.090
Hegde K, Chandra N, Sarma SJ, Brar SK, Veeranki VD. Genetic engineering strategies for enhanced biodiesel production. Mol Biotechnol. 2015; 57(7): 606-24. https://doi.org/10.1007/s12033-015-9869-y
Amin A, Gadallah A, El Morsi AK, El-Ibiari NN, El-Diwani GI. Experimental and empirical study of diesel and castor biodiesel blending effect, on kinematic viscosity, density and calorific value. Egypt J Pet. 2016; 25(4): 509- 14. https://doi.org/10.1016/j.ejpe.2015.11.002
Millo F, Debnath BK, Vlachos T, Ciaravino C, Postrioti L, Buitoni G. Effects of different biofuels blends on performance and emissions of an automotive diesel engine. Fuel. 2015; 159: 614-27. https://doi.org/10.1016/j.fuel.2015.06.096
Dahmen M, Marquardt W. Model-based formulation of biofuel blends by simultaneous product and pathway design. Energy Fuels. 2017; 31(4): 4096-121. https://doi.org/10.1021/acs.energyfuels.7b00118
Laesecke J, Ellis N, Kirchen P. Production, analysis and combustion characterization of biomass fast pyrolysis oil-biodiesel blends for use in diesel engines. Fuel. 2017; 199: 346-57. https://doi.org/10.1016/j.fuel.2017.01.093
Kumar P, Rehman A. Bio-diesel in homogeneous charge compression ignition (HCCI) combustion. Renew Sustain Energy Rev. 2016; 56: 536-50. https://doi.org/10.1016/j.rser.2015.11.088
Sehatpour MH, Kazemi A, Sehatpour HE. Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach. Renew Sustain Energy Rev. 2017; 72: 295-310. https://doi.org/10.1016/j.rser.2017.01.067
Strzalka R, Schneider D, Eicker U. Current status of bioenergy technologies in Germany. Renew Sustain Energy Rev. 2017; 72: 801-20. https://doi.org/10.1016/j.rser.2017.01.091
Nguyen DT, Johir MAH, Mahlia TMI, Silitonga AS, Zhang X, Liu Q, et al. Microalgae-derived biolubricants: Challenges and opportunities. Sci Total Environ. 2024; 954: 176759. https://doi.org/10.1016/j.scitotenv.2024.176759
Aguilar-Aguilar A, Mena-Cervantes VY, Hernández-Altamirano R. Analysis of public policies and resources for biodiesel production in México. Biomass Bioenergy. 2025; 196: 107762. https://doi.org/10.1016/j.biombioe.2025.107762
Lee J, Jung JM, Oh JI, Ok YS, Kwon EE. Establishing a green platform for biodiesel synthesis via strategic utilization of biochar and dimethyl carbonate. Bioresour Technol. 2017; 241: 1178-81. https://doi.org/10.1016/j.biortech.2017.05.187
Li X, Luo X, Jin Y, Li J, Zhang H, Zhang A, et al. Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels. Renew Sustain Energy Rev. 2018; 82: 3762-97. https://doi.org/10.1016/j.rser.2017.10.091
Pattanaik BP, Misra RD. Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: A review. Renew Sustain Energy Rev. 2017; 73: 545-57. https://doi.org/10.1016/j.rser.2017.01.018
Romero M, Pizzi A, Toscano G, Casazza AA, Busca G, Bosio B, et al. Preliminary experimental study on biofuel production by deoxygenation of Jatropha oil. Fuel Process Technol. 2015; 137: 31-7. https://doi.org/10.1016/j.fuproc.2015.04.002
Romero MJA, Pizzi A, Toscano G, Busca G, Bosio B, Arato E. Deoxygenation of waste cooking oil and non-edible oil for the production of liquid hydrocarbon biofuels. Waste Manag. 2016; 47: 62-8. https://doi.org/10.1016/j.wasman.2015.03.033
Hilbers TJ, Sprakel LMJ, Van Der Ham LGJ. Green diesel from hydrotreated vegetable oil process design study. Chem Eng Technol. 2015; 38(4): 651-7. https://doi.org/10.1002/ceat.201400648
Ali OM, Mamat R, Abdullah NR, Abdullah AA. Analysis of blended fuel properties and engine performance with palm biodiesel-diesel blended fuel. Renew Energy. 2016; 86: 59-67. https://doi.org/10.1016/j.renene.2015.07.103
Stephen JL, Periyasamy B. Innovative developments in biofuels production from organic waste materials: A review. Fuel. 2018; 214: 62333. https://doi.org/10.1016/j.fuel.2017.11.042
Mujeeb MA, Vedamurthy AB, T SC. Current strategies and prospects of biodiesel production: A review. Pelagia Res Libr Adv Appl Sci Res. 2016; 7(1): 120-33.
Mahmudul HM, Hagos FY, Mamat R, Adam AA, Ishak WFW, Alenezi R. Production, characterization and performance of biodiesel as an alternative fuel in diesel engines: A review. Renew Sustain Energy Rev. 2017; 72: 497-509. https://doi.org/10.1016/j.rser.2017.01.001
Tabatabaei M, Karimi K, Horváth IS, Kumar R. Recent trends in biodiesel production. Biofuel Res J. 2015; 2(3): 258-67. https://doi.org/10.18331/BRJ2015.2.3.4
Huang J, Xia J, Jiang W, Li Y, Li J. Biodiesel production from microalgae oil catalyzed by a recombinant lipase. Bioresour Technol. 2015; 180: 47-53. https://doi.org/10.1016/j.biortech.2014.12.072
Norjannah B, Ong HC, Masjuki HH, Juan JC, Chong WT. Enzymatic transesterification for biodiesel production: A comprehensive review. RSC Adv. 2016; 6(65): 60034-55. https://doi.org/10.1039/C6RA08062F
Gorimbo J, Liu X, Yao Y, Hildebrandt D. Chemicals and fuels from biomass via fischer-tropsch synthesis: a route to sustainability. Cambridge: Royal Society of Chemistry; 2022. https://doi.org/10.1039/9781839167829
Duma NS. Techno-economic assessment of algae conversion to biofuels [dissertation]. 2023.
Skorupskaite V, Makareviciene V, Gumbyte M. Opportunities for simultaneous oil extraction and transesterification during biodiesel fuel production from microalgae: A review. Fuel Process Technol. 2016; 150: 78-87. https://doi.org/10.1016/j.fuproc.2016.05.002
Okoye PU, Hameed BH. Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production. Renew Sustain Energy Rev. 2016; 53: 558-74. https://doi.org/10.1016/j.rser.2015.08.064
Emmanouilidou E, Lazaridou A, Mitkidou S, Kokkinos NC. A comparative study on biodiesel production from edible and non-edible biomasses. J Mol Struct. 2024; 1306: 137870. https://doi.org/10.1016/j.molstruc.2024.137870
Verma P, Sharma MP, Dwivedi G. Impact of alcohol on biodiesel production and properties. Renew Sustain Energy Rev. 2016; 56: 319-33. https://doi.org/10.1016/j.rser.2015.11.048
Go AW, Sutanto S, Ong LK, Tran-Nguyen PL, Ismadji S, Ju YH. Developments in in-situ (trans)esterification for biodiesel production: A critical review. Renew Sustain Energy Rev. 2016; 60: 284-305. https://doi.org/10.1016/j.rser.2016.01.070
Maroa S, Inambao F. The effect of cetane number and oxygen content in the performance and emissions characteristics of a diesel engine using biodiesel blends. J Energy South Afr. 2019; 30(2): 1-13. https://doi.org/10.17159/2413-3051/2019/v30i2a5337
Ishak ZI, Sairi NA, Alias Y, Aroua MKT, Yusoff R. A review of ionic liquids as catalysts for transesterification reactions of biodiesel and glycerol carbonate production. Catal Rev Sci Eng. 2017; 59(1): 44-93. https://doi.org/10.1080/01614940.2016.1268021
Karmee SK. Liquid biofuels from food waste: Current trends, prospect and limitation. Renew Sustain Energy Rev. 2016; 53: 945-53. https://doi.org/10.1016/j.rser.2015.09.041
Alaba PA, Sani YM, Ashri Wan Daud WM. Efficient biodiesel production: Via solid superacid catalysis: A critical review on recent breakthrough. RSC Adv. 2016; 6(82): 78351-68. https://doi.org/10.1039/C6RA08399D
Katiyar R, Gurjar BR, Biswas S, Pruthi V, Kumar N, Kumar P. Microalgae: An emerging source of energy based bio-products and a solution for environmental issues. Renew Sustain Energy Rev. 2017; 72: 1083-93. https://doi.org/10.1016/j.rser.2016.10.028
Salam KA, Velasquez-Orta SB, Harvey AP. A sustainable integrated in situ transesterification of microalgae for biodiesel production and associated co-products – A review. Renew Sustain Energy Rev. 2016; 65: 1179-98. https://doi.org/10.1016/j.rser.2016.07.068
Pranta MH, Cho HM. A comprehensive review of the evolution of biodiesel production technologies. Energy Convers Manag. 2025; 328: 119623. https://doi.org/10.1016/j.enconman.2025.119623
Moazeni F, Chen YC, Zhang G. Enzymatic transesterification for biodiesel production from used cooking oil: A review. J Clean Prod. 2019; 216: 117-28. https://doi.org/10.1016/j.jclepro.2019.01.181
Kumar M, Sharma MP. Selection of potential oils for biodiesel production. Renew Sustain Energy Rev. 2016; 56: 1129-38. https://doi.org/10.1016/j.rser.2015.12.032
Laviola BG, Rodrigues EV, Teodoro PE, Peixoto LA, Bhering LL. Biometric and biotechnology strategies in Jatropha genetic breeding for biodiesel production. Renew Sustain Energy Rev. 2017; 76: 894-904. https://doi.org/10.1016/j.rser.2017.03.116
Mostafa SSM, El-Gendy NS. Evaluation of fuel properties for microalgae Spirulina platensis biodiesel and its blends with Egyptian petro-diesel. Arab J Chem. 2017; 10: S2040-50. https://doi.org/10.1016/j.arabjc.2013.07.034
Abd-Alla MH, Bagy MMK, Morsy FM, Hassan EA. Improvement of fungal lipids esterification process by bacterial lipase for biodiesel synthesis. Fuel. 2015; 160: 196-204. https://doi.org/10.1016/j.fuel.2015.07.080
Bhatia SK, Yi D, Kim Y, Kim HJ, Seo HM, Lee JH, et al. Development of semi-synthetic microbial consortia of Streptomyces coelicolor for increased production of biodiesel (fatty acid methyl esters). Fuel. 2015; 159: 189-96. https://doi.org/10.1016/j.fuel.2015.06.084
Li Q, Backes F, Wachtmeister G. Application of canola oil operation in a diesel engine with common rail system. Fuel. 2015; 159: 141-9. https://doi.org/10.1016/j.fuel.2015.06.060
Mofijur M, Rasul MG, Hyde J, Azad AK, Mamat R, Bhuiya MMK. Role of biofuel and their binary (diesel-biodiesel) and ternary (ethanol-biodiesel-diesel) blends on internal combustion engines emission reduction. Renew Sustain Energy Rev. 2016; 53: 265-78. https://doi.org/10.1016/j.rser.2015.08.046
Sierra-Cantor JF, Guerrero-Fajardo CA. Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review. Renew Sustain Energy Rev. 2017; 72: 774-90. https://doi.org/10.1016/j.rser.2017.01.077
Cai Z, Wang Y, Teng Y, Chong K, Wang J, Zhang J, et al. A two-step biodiesel production process from waste cooking oil via recycling crude glycerol esterification catalyzed by alkali catalyst. Fuel Process Technol. 2015; 137: 186-93. https://doi.org/10.1016/j.fuproc.2015.04.017
Maymandi MG, Rahimpour F. Optimization of lipid productivity by Citrobacter youngae CECT 5335 and biodiesel preparation using ionic liquid catalyst. Fuel. 2015; 159: 476-83. https://doi.org/10.1016/j.fuel.2015.07.014
Lam SS, Liew RK, Jusoh A, Chong CT, Ani FN, Chase HA. Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques. Renew Sustain Energy Rev. 2016; 53: 741-53. https://doi.org/10.1016/j.rser.2015.09.005
van Dyk S, Su J, McMillan JD, Saddler J. Potential synergies of drop-in biofuel production with further co-processing at oil refineries. Biofuels Bioprod Biorefin. 2019; 13(3): 760-75. https://doi.org/10.1002/bbb.1974
Singh S, Patel A. Mono lacunary phosphotungstate anchored to MCM-41 as recyclable catalyst for biodiesel production via transesterification of waste cooking oil. Fuel. 2015; 159: 720-7. https://doi.org/10.1016/j.fuel.2015.07.004
Sodhi AK, Tripathi S, Kundu K. Biodiesel production using waste cooking oil: A waste to energy conversion strategy. Clean Technol Environ Policy. 2017; 19(6): 1799-807. https://doi.org/10.1007/s10098-017-1357-6
César AdS, Werderits DE, Saraiva GLdO, Guabiroba RCdS. The potential of waste cooking oil as supply for the Brazilian biodiesel chain. Renew Sustain Energy Rev. 2017; 72: 246-53. https://doi.org/10.1016/j.rser.2016.11.240
Moreno-Garcia L, Adjallé K, Barnabé S, Raghavan GSV. Microalgae biomass production for a biorefinery system: Recent advances and the way towards sustainability. Renew Sustain Energy Rev. 2017; 76: 493-506. https://doi.org/10.1016/j.rser.2017.03.024
Kesaano M, Sims RC, White MA, Gardner RD, Van Wagenen J, Schiavone S, et al. Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms. Bioresour Technol. 2015; 180: 7-15. https://doi.org/10.1016/j.biortech.2014.12.082
Nekhavhambe E, Mukaya HE, Nkazi DB. Development of castor oil-based polymers: A review. J Adv Manuf Process. 2019; 1(4): 1-13. https://doi.org/10.1002/amp2.10030
Verma P, Sharma MP. Review of process parameters for biodiesel production from different feedstocks. Renew Sustain Energy Rev. 2016; 62: 1063-71. https://doi.org/10.1016/j.rser.2016.04.054
Daramola MO, Nkazi D, Mtshali K. Synthesis and evaluation of catalytic activity of calcined sodium silicate for transesterification of waste cooking oil to biodiesel. Int J Renew Energy Res. 2015; 5(2): 517-23.
Lotti M, Pleiss J, Valero F, Ferrer P. Enzymatic production of biodiesel: Strategies to overcome methanol inactivation. Biotechnol J. 2018; 13(5): 1-10. https://doi.org/10.1002/biot.201700155
Han M, Yin D, Wang X, Wang Y, Zhang X, Wang W. Efficient confinement of ionic liquids in MIL-100(Fe) frameworks by the 'impregnation-reaction-encapsulation' strategy for biodiesel production. RSC Adv. 2016; 6(43): 37110-7. https://doi.org/10.1039/C6RA00579A
He B, Shao Y, Liang M, Li J, Cheng Y. Biodiesel production from soybean oil by guanidinylated chitosan. Fuel. 2015; 159: 33-9. https://doi.org/10.1016/j.fuel.2015.06.038
Marx S. Glycerol-free biodiesel production through transesterification: A review. Fuel Process Technol. 2016; 151: 139-47. https://doi.org/10.1016/j.fuproc.2016.05.033
Nanda MR, Zhang Y, Yuan Z, Qin W, Ghaziaskar HS, Xu C. Catalytic conversion of glycerol for sustainable production of solketal as a fuel additive: A review. Renew Sustain Energy Rev. 2016; 56(1): 1022-31. https://doi.org/10.1016/j.rser.2015.12.008
Palmer JD, Brigham CJ. Feasibility of triacylglycerol production for biodiesel, utilizing Rhodococcus opacus as a biocatalyst and fishery waste as feedstock. Renew Sustain Energy Rev. 2016; 56: 922-8. https://doi.org/10.1016/j.rser.2015.12.002
Campanelli P, Banchero M, Manna L. Synthesis of biodiesel from edible, non-edible and waste cooking oils via supercritical methyl acetate transesterification. Fuel. 2010; 89(12): 3675-82. https://doi.org/10.1016/j.fuel.2010.07.033
Gomes MG, Santos DQ, De Morais LC, Pasquini D. Purification of biodiesel by dry washing, employing starch and cellulose as natural adsorbents. Fuel. 2015; 155: 1-6. https://doi.org/10.1016/j.fuel.2015.04.012
Xu W, Gao L, Xiao G. Biodiesel production optimization using monolithic catalyst in a fixed-bed membrane reactor. Fuel. 2015; 159: 484-90. https://doi.org/10.1016/j.fuel.2015.07.017
Kokkinos E, Emmanouilidou E. Waste-to-Energy: Applications and Perspectives on Sustainable Aviation Fuel Production. In: Shukla PC, Belgiorno G, Di Blasio G, Agarwal AK, Eds. Renewable Fuels for Sustainable Mobility. Energy, Environment, and Sustainability. Springer; 2023. p. 265-86.
Wang E, Shen J, Wang Y, Tang S, Emami S, Reaney MJT. Production of biodiesel with lithium glyceroxide. Fuel. 2015; 160: 621-8. https://doi.org/10.1016/j.fuel.2015.07.101
Aguieiras ECG, Cavalcanti-Oliveira ED, Freire DMG. Current status and new developments of biodiesel production using fungal lipases. Fuel. 2015; 159: 52-67. https://doi.org/10.1016/j.fuel.2015.06.064
Silitonga AS, Masjuki HH, Ong HC, A.H. Sebayang AH, S. Dharma S, F. Kusumo F, et al. Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine. Energy. 2018; 159: 1075-87. https://doi.org/10.1016/j.energy.2018.06.202
Shiu P, Gunawan S, Hsieh W, Kasim NS, Ju Y. Biodiesel production from rice bran by a two-step in-situ process. Bioresour Technol. 2010; 101(3): 984-9. https://doi.org/10.1016/j.biortech.2009.09.011
Su F, Li GL, Fan YL, Yan YJ. Enhancing biodiesel production via a synergic effect between immobilized Rhizopus oryzae lipase and Novozym 435. Fuel Process Technol. 2015; 137: 298-304. https://doi.org/10.1016/j.fuproc.2015.03.013
Sanli H, Canakci M, Alptekin E, Turkcan A, Ozsezen AN. Effects of waste frying oil based methyl and ethyl ester biodiesel fuels on the performance, combustion and emission characteristics of a DI diesel engine. Fuel. 2015; 159: 179-87. https://doi.org/10.1016/j.fuel.2015.06.081
Kumar D, Ali A. Direct synthesis of fatty acid alkanolamides and fatty acid alkyl esters from high free fatty acid containing triglycerides as lubricity improvers using heterogeneous catalyst. Fuel. 2015; 159: 845-53. https://doi.org/10.1016/j.fuel.2015.07.046
Wang X, Chen J, Yan X, Wang X, Zhang J, Huang J, et al. Heavy metal chemical extraction from industrial and municipal mixed sludge by ultrasound-assisted citric acid. J Ind Eng Chem. 2015; 27: 368-72. https://doi.org/10.1016/j.jiec.2015.01.016
Altaie MAH, Janius RB, Rashid U, Taufiq-Yap YH, Yunus R, Zakaria R. Cold flow and fuel properties of methyl oleate and palm-oil methyl ester blends. Fuel. 2015; 160: 238-44. https://doi.org/10.1016/j.fuel.2015.07.084
Spacino KR, Borsato D, Buosi GM, Chendynski LT. Determination of kinetic and thermodynamic parameters of the B100 biodiesel oxidation process in mixtures with natural antioxidants. Fuel Process Technol. 2015; 137: 366-70. https://doi.org/10.1016/j.fuproc.2015.05.006
Zulkepli S, Juan JC, Lee HV, Rahman NSA, Show PL, Ng EP. Modified mesoporous HMS supported Ni for deoxygenation of triolein into hydrocarbon-biofuel production. Energy Convers Manag. 2018; 165: 495-508. https://doi.org/10.1016/j.enconman.2018.03.087
Wang F, Xu J, Jiang J, Liu P, Li F, Ye J. et al. Hydrotreatment of vegetable oil for green diesel over activated carbon supported molybdenum carbide catalyst. Fuel. 2018;216:738–46. https://doi.org/10.1016/j.fuel.2017.12.059
Aldhaidhawi M, Chiriac R, Badescu V. Ignition delay, combustion and emission characteristics of diesel engine fueled with rapeseed biodiesel – A literature review. Renew Sustain Energy Rev. 2017; 73: 178-86. https://doi.org/10.1016/j.rser.2017.01.129
Gharehghani A, Mirsalim M, Hosseini R. Effects of waste fish oil biodiesel on diesel engine combustion characteristics and emission. Renew Energy. 2017; 101: 930-6. https://doi.org/10.1016/j.renene.2016.09.045
Li D, Xin H, Du X, Hao X, Liu Q, Hu C. Recent advances for the production of hydrocarbon biofuel via deoxygenation progress. Sci Bull. 2015; 60(24): 2096-106. https://doi.org/10.1007/s11434-015-0971-0
Viêgas CV, Hachemi I, Freitas SP, Mäki-Arvela P, Aho A, Hemming J. et al. A route to produce renewable diesel from algae: Synthesis and characterization of biodiesel via in situ transesterification of Chlorella alga and its catalytic deoxygenation to renewable diesel. Fuel. 2015; 155: 144-54. https://doi.org/10.1016/j.fuel.2015.03.064
Hermida L, Abdullah AZ, Mohamed AR. Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process conditions, reaction kinetics and mechanism. Renew Sustain Energy Rev. 2015; 42: 1223-33. https://doi.org/10.1016/j.rser.2014.10.099
Dawes GJS, Scott EL, Le Nôtre J, Sanders JPM, Bitter JH. Deoxygenation of biobased molecules by decarboxylation and decarbonylation – A review on the role of heterogeneous, homogeneous and bio-catalysis. Green Chem. 2015; 17(6): 3231-50. https://doi.org/10.1039/C5GC00023H
Oh YK, Hwang KR, Kim C, Kim JR, Lee JS. Recent developments and key barriers to advanced biofuels: A short review. Bioresour Technol. 2018; 257: 320-33. https://doi.org/10.1016/j.biortech.2018.02.089
Rogers KA, Zheng Y. Selective deoxygenation of biomass-derived bio-oils within hydrogen-modest environments: A review and new insights. ChemSusChem. 2016; 9(14): 1750-72. https://doi.org/10.1002/cssc.201600144
Online VA, Lee HV, Juan JC, Noorsaadah AR. Catalytic deoxygenation of triglycerides to green diesel over modified CaO-based catalysts. RSC Adv. 2017; 7: 46445-60. https://doi.org/10.1039/C7RA08061A
Kong Z, He L, Shi Y, Guan Q, Ning P. A review of thermal homogeneous catalytic deoxygenation reactions for valuable products. Heliyon. 2020; 6: e03446. https://doi.org/10.1016/j.heliyon.2020.e03446
Ng A, Lup K, Abnisa F, Mohd W, Wan A, Aroua MK. A review on reaction mechanisms of metal-catalyzed deoxygenation process in bio-oil model compounds. Appl Catal A Gen. 2017; 541: 87-106. https://doi.org/10.1016/j.apcata.2017.05.002
Hachemi I, Kumar N, Mäki-Arvela P, Roine J, Peurla M, Hemming J, et al. Sulfur-free Ni catalyst for production of green diesel by hydrodeoxygenation. J Catal. 2017; 347: 205-21. https://doi.org/10.1016/j.jcat.2016.12.009
Liu J, Fan K, Tian W, Liu C, Rong L. Hydroprocessing of Jatropha oil over NiMoCe/Al₂O₃ catalyst. Int J Hydrogen Energy. 2012; 37(23): 17731-7. https://doi.org/10.1016/j.ijhydene.2012.09.020
Liu J, Liu C, Zhou G, Shen S, Rong L. Hydrotreatment of Jatropha oil over NiMoLa/Al2O3catalyst. Green Chem. 2012; 14: 2499-2505. https://doi.org/10.1039/C2GC35450K
Liu J, Liu C, Fan K, Shen S, Zhou G, Rong L, et al. Hydroprocessing of Jatropha oil for production of green diesel over non-sulfided Ni-PTA/Al₂O₃ catalyst. Nat Publ Gr. 2015; (July 2014): 1-13. https://doi.org/10.1038/srep11327
Veriansyah B, Kim SK, Han JY, Hong SA, Kim J, Lee YW. Production of renewable diesel by hydroprocessing of soybean oil: Effect of catalysts. Fuel. 2012; 94: 578-85. https://doi.org/10.1016/j.fuel.2011.10.057
Hari TK, Yaakob Z. Production of diesel fuel by the hydrotreatment of Jatropha oil derived fatty acid methyl esters. React Kinet Mech Catal. 2015; 114(1): 131-45. https://doi.org/10.1007/s11144-015-0874-8
Meller E, Green U, Aizenshtat Z, Sasson Y. Catalytic deoxygenation of castor oil over Pd/C for the production of cost-effective biofuel. Fuel. 2014; 135: 89-95. https://doi.org/10.1016/j.fuel.2014.04.094
Liu S, Zhu Q, Guan Q, He L, Li W. Bio-aviation fuel production from hydroprocessing castor oil promoted by nickel-based bifunctional catalysts. Bioresour Technol. 2015; 183: 93-100. https://doi.org/10.1016/j.biortech.2015.02.056
Tapia J, Acelas NY, López D, Moreno A, Salcedo-Reyes JC. NiMo-sulfide supported on activated carbon to produce renewable diesel. Sci Tech Año. 2017; 22(1): 71-85. https://doi.org/10.11144/Javeriana.SC22-1.nsoa
Li X, Luo X. Preparation of mesoporous activated carbon supported Ni catalyst for deoxygenation of stearic acid into hydrocarbons. Environ Prog Sustain Energy. 2015; 34(2): 607-12. https://doi.org/10.1002/ep.12026
Kumar P, Yenumala SR, Maity SK, Shee D. Kinetics of hydrodeoxygenation of stearic acid using supported nickel catalysts: Effects of supports. Appl Catal A Gen. 2014; 471: 28-38. https://doi.org/10.1016/j.apcata.2013.11.021
Schreiber MW, Rodriguez-Niño D, Gutiérrez OY, Lercher JA. Hydrodeoxygenation of fatty acid esters catalyzed by Ni on nano-sized MFI type zeolites. Catal Sci Technol. 2016; 6(22): 7976-84. https://doi.org/10.1039/C6CY01598K
Gorimbo J, Moyo M, Liu X. Oligomerization of bio-olefins for bio-jet fuel. In: Maity SK, Gayen K, Bhowmick TK, Eds. Hydrocarbon Biorefinery. 1st ed. Elsevier; 2022. p. 271-94. https://doi.org/10.1016/B978-0-12-823306-1.00010-8
Rasyid R, Prihartantyo A, Mahfud M, Roesyadi A. Hydrocracking of Calophyllum inophyllum oil with non-sulfide CoMo catalysts. Bull Chem React Eng Catal. 2015; 10(1): 61-9. https://doi.org/10.9767/bcrec.10.1.6597.61-69
Sahu R, Song BJ, Im JS, Jeon YP, Lee CW. A review of recent advances in catalytic hydrocracking of heavy residues. J Ind Eng Chem. 2015; 27: 12-24. https://doi.org/10.1016/j.jiec.2015.01.011
Kim SH, Kim KD, Lee YK. Effects of dispersed MoS₂ catalysts and reaction conditions on slurry phase hydrocracking of vacuum residue. J Catal. 2017; 347: 127-37. https://doi.org/10.1016/j.jcat.2016.11.015
Munir D, Irfan MF, Usman MR. Hydrocracking of virgin and waste plastics: A detailed review. Renew Sustain Energy Rev. 2018; 90: 490-515. https://doi.org/10.1016/j.rser.2018.03.034
Agudelo JL, Hensen EJM, Giraldo SA, Hoyos LJ. Influence of steam-calcination and acid leaching treatment on the VGO hydrocracking performance of faujasite zeolite. Fuel Process Technol. 2015; 133: 89-96. https://doi.org/10.1016/j.fuproc.2015.01.011
Peng C, Du Y, Feng X, Hu Y, Fang X. Research and development of hydrocracking catalysts and technologies in China. Front Chem Sci Eng. 2018; 12(4): 867–77. https://doi.org/10.1007/s11705-018-1768-x
Nguyen MT, Kang D, Phan N, Lee D, Kim J. A review on the oil-soluble dispersed catalyst for slurry-phase hydrocracking of heavy oil. J Ind Eng Chem. 2016; 43: 1-12. https://doi.org/10.1016/j.jiec.2016.07.057
Lopez G, Artetxe M, Amutio M, Bilbao J, Olazar M. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals: A review. Renew Sustain Energy Rev. 2017; 73: 346-68. https://doi.org/10.1016/j.rser.2017.01.142
Kim MY, Kim JK, Lee ME, Lee S, Choi M. Maximizing biojet fuel production from triglyceride: Importance of the hydrocracking catalyst and separate deoxygenation/hydrocracking steps. ACS Catal. 2017; 7(9): 6256-67. https://doi.org/10.1021/acscatal.7b01326
Singh O, Khairun HS, Joshi H, Sarkar B, Gupta NK. Advancing light olefin production: Exploring pathways, catalyst development, and future prospects. Fuel. 2025; 379: 132992. https://doi.org/10.1016/j.fuel.2024.132992

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2025 Standford Mirainashe Pedzisai, Joshua Gorimbo, Diankanua Nkazi