Mass Transfer Resistances at the Boundary of a Fractured Porous Medium
DOI:
https://doi.org/10.15377/2409-787X.2014.01.01.1Keywords:
Averaging volume, fractured porous media, surface transport equation, mass transfer, numerical model, interfacial effects.Abstract
The aim of this paper is the study of the mass transfer resistance effects at the boundary of a fractured porous media. The boundary between the porous media adjacent to the fluid considers the transient effects. The numerical experiments show that the α parameter has an influence that facilitates the mass transfer of the porous region to the fluid region. The α parameter expresses the relation of the mass transfer resistances between the porous media and the homogeneous fluid; in the present work it is considered as a parameter which facilities mass transfer of the porous region to the fluid region.
Downloads
References
Rangel-German ER, Kovscek AR. Water Infiltration in Fractured Systems: Experiments and Analytical Model. In: SPE Annual Technical Conference and Exhibition. New Orleans – Louisiana 2001. http://dx.doi.org/10.2118/71618-MS DOI: https://doi.org/10.2118/71618-MS
Kaya E, Zarrouk SJ, O'Sulliva. MJ. Reinjection in geothermal fields: A review of worldwide experience. Renewable and Sustainable Energy Reviews 2011; 15: 47-68. http://dx.doi.org/10.1016/j.rser.2010.07.032 DOI: https://doi.org/10.1016/j.rser.2010.07.032
Beavers G, Joseph D. Boundary conditions at a naturally permeable Wall, J. Fluid Mech 1967; 30: 197- 207. http://dx.doi.org/10.1017/S0022112067001375 DOI: https://doi.org/10.1017/S0022112067001375
Neale G, Nader W. Practical signicance of Brinkman´s extension of Darcy´s law: coupled parallel flows within a channel and a bounding porous medium. Can J Chem Energ 1974; 52: 475-478. http://dx.doi.org/10.1002/cjce.5450520407 DOI: https://doi.org/10.1002/cjce.5450520407
Vafai K, Tien CL. Boundary and inertia effects on flow and heat transfer in porous media. Int J Heat Mass Transfer 1981; 24: 195-203. http://dx.doi.org/10.1016/0017-9310(81)90027-2 DOI: https://doi.org/10.1016/0017-9310(81)90027-2
Haber S, Mauri R. Boundary conditions for Darcy´s flow through porous media. Int J Multiphase Flow 1983; 9: 561- 574. http://dx.doi.org/10.1016/0301-9322(83)90018-6 DOI: https://doi.org/10.1016/0301-9322(83)90018-6
Poulikakos D, Kazmierczak M. Forced convection in a duct partially filled with a porous material. J Heat Transfer 1987; 109: 653-662. http://dx.doi.org/10.1115/1.3248138 DOI: https://doi.org/10.1115/1.3248138
Prat M. On the boundary conditions at the macroscopic level. Transport in Porous Media 1989; 4: 259-280. http://dx.doi.org/10.1007/BF00138039 DOI: https://doi.org/10.1007/BF00138039
Vafai K. Kim SJ. Fluid mechanics of the interface region between a porous medium and a fluid layer – an exact solution. Int J Heat Fluid Flow 1990; 11: 254-256. http://dx.doi.org/10.1016/0142-727X(90)90045-D DOI: https://doi.org/10.1016/0142-727X(90)90045-D
Prat M. Some refinements concerning the boundary conditions at the macroscopic level. Transport in Porous Media 1992; 7: 147-161. http://dx.doi.org/10.1007/BF00647394 DOI: https://doi.org/10.1007/BF00647394
Jang JY, Chen JL. Forced convection in a parallel plate channel partially filled with a high porosity medium. Int Commun Heat Mass Transfer 1992; 19: 263-273. http://dx.doi.org/10.1016/0735-1933(92)90037-I DOI: https://doi.org/10.1016/0735-1933(92)90037-I
Sahraoui M, Kaviany M. Slip and no slip temperature boundary conditions at the interface of porous, plain media: Convection. Int Heat Mass Trans 1994; 37: 1029-1044. http://dx.doi.org/10.1016/0017-9310(94)90227-5 DOI: https://doi.org/10.1016/0017-9310(94)90227-5
Kuznetsov AV. Analytical investigation of the fluid flow in the interface region between a porous medium and a clear fluid in channels partially filled with a porous medium. Appl Sci Res 1996; 56: 53-67. http://dx.doi.org/10.1007/BF02282922 DOI: https://doi.org/10.1007/BF02282922
Alazmi B, Vafai K. Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int J Heat Mass Trans 2001; 44: 1735-1749. http://dx.doi.org/10.1016/S0017-9310(00)00217-9 DOI: https://doi.org/10.1016/S0017-9310(00)00217-9
Espinosa-Paredes G. Jump mass transfer for double emulsion systems. International Mathematical Forum 2 2007; (32): 1553-1570. DOI: https://doi.org/10.12988/imf.2007.07140
Espinosa-Paredes G, Morales-Zárate E, Vázquez-Rodríguez A. Analytical Analysis for Mass Transfer in a Fractured Porous Medium. Petroleum Science and Technology 2013; 31: 2004-2012. http://dx.doi.org/10.1080/10916466.2011.557681 DOI: https://doi.org/10.1080/10916466.2011.557681
Gwo JP, O’Brien R, Jardine PM. Mass transfer in structured porous media: Embedding mesoscale structure and microscale hydrodynamics in a two-region model. J Hydrologic 1998; 208: 204-222. http://dx.doi.org/10.1016/S0022-1694(98)00161-9 DOI: https://doi.org/10.1016/S0022-1694(98)00161-9
Gibbs JW. The Collected Works of J. Willard Gibbs, vol. 1, Yale University Press, New Haven, Connecticut 1928.
Slattery JC. Interfacial Transport Phenomena. Springer- Verlag, New-York 1990. DOI: https://doi.org/10.1007/978-1-4757-2090-7
Kaviany M. Principles of Heat Transfer in Porous Media, (Second Edition) Springer-Verlang, New York 1995. http://dx.doi.org/10.1007/978-1-4612-4254-3 DOI: https://doi.org/10.1007/978-1-4612-4254-3
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Epifanio Morales-Zárate, Gilberto Espinosa-Paredes

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All the published articles are licensed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.


