Photovoltaic Power Generation Forecasting Based on the ARIMA-BPNN-SVR Model

Authors

DOI:

https://doi.org/10.15377/2409-5818.2022.09.2

Keywords:

Combination forecasting, Photovoltaic power generation, Support vector regression (SVR), Back propagation neural network (BPNN), Auto regression integrate moving average (ARIMA)

Abstract

With the continuous expansion of the capacity of photovoltaic power generation systems, accurate power generation load forecasting can make grid dispatching more reasonable and optimize load distribution. This paper proposes a combined forecasting model based on Auto Regression Integrate Moving Average (ARIMA), back propagation neural network (BPNN), and support vector regression (SVR), namely ARIMA-BPNN-SVR model, aiming at the problem of low accuracy of a single model and traditional forecasting model. Through the complementary advantages of ARIMA, BPNN, and SVR models, the model has good anti-noise ability, nonlinear mapping, and adaptive ability when processing photovoltaic power generation data. Data experiments are carried out on solar photovoltaic power generation in the United States, and the accuracy of model forecasting is evaluated according to MAE, MSE, RMSE, and MAPE. The experimental results show that the proposed ARIMA-BPNN-SVR outperforms the forecasting performance of the single models ARIMA, BPNN, and SVR. Its MAE, MSE, RMSE and MAPE are 0.53, 0.41, 0.64 and 0.84 respectively. In the Wilcoxon sign-rank test, the p-value of the proposed model reached 0.98, indicating the effectiveness of the ARIMA-BPNN-SVR model.

Author Biographies

  • Guo-Feng Fan, Ping Ding Shan University, Ping Ding Shan 467000, Henan, China

    School of Mathematics & Statistics

  • Hui-Zhen Wei, Ping Ding Shan University, Ping Ding Shan 467000, Henan, China

    School of Mathematics & Statistics

  • Meng-Yao Chen, Ping Ding Shan University, Ping Ding Shan 467000, Henan, China

    School of Mathematics & Statistics

  • Wei-Chiang Hong, Asia Eastern University of Science and Technology, New Taipei 22064, Taiwan

    Department of Information Management

References

Li YT, Su Y, Shu LJ. An ARMAX model for forecasting the power output of a grid connected photovoltaic system. Renewable Energy, 2014; 66: 78-89. https://doi.org/10.1016/j.renene.2013.11.067. DOI: https://doi.org/10.1016/j.renene.2013.11.067

Zhang JL, Tan ZF, Wei YM. An adaptive hybrid model for day-ahead photovoltaic output power prediction. Journal of Cleaner Production, 2020; 244: 118858. https://doi.org/10.1016/j.jclepro.2019.118858. DOI: https://doi.org/10.1016/j.jclepro.2019.118858

Ding S, Li RJ, Tao Z. A novel adaptive discrete grey model with time-varying parameters for long-term photovoltaic power generation forecasting. Energy Conversion and Management, 2021; 227: 113644. https://doi.org/10.1016/j.enconman.2020.113644 DOI: https://doi.org/10.1016/j.enconman.2020.113644

Zhong ZF, Yang CX, Cao WY, Yan CY. Short-term photovoltaic power generation forecasting based on a multivariable grey theory model with parameter optimization. Mathematical Problems in Engineering, 2017; 2017: 5812394. https://doi.org/10.1155/2017/5812394 DOI: https://doi.org/10.1155/2017/5812394

Yu L, Ma X, Wu WQ, Xiang XW, Wang Y, Zeng B. Application of a novel time-delayed power-driven grey model to forecast photovoltaic power generation in the Asia-Pacific region. Sustainable Energy Technologies and Assessments, 2021; 44:100968. https://doi.org/10.1016/j.seta.2020.100968. DOI: https://doi.org/10.1016/j.seta.2020.100968

Yadav AK, Chandel SS. Identification of relevant input variables for prediction of 1-minute time-step photovoltaic module power using artificial neural network and multiple linear regression models. Renewable and Sustainable Energy Reviews, 2017; 77: 955-969. https://doi.org/10.1016/j.rser.2016.12.029. DOI: https://doi.org/10.1016/j.rser.2016.12.029

Zhong JQ, Liu LY, Sun Q, Wang XY. Prediction of photovoltaic power generation based on general regression and back propagation neural network. Energy Procedia, 2018; 152: 1224-1229. https://doi.org/10.1016/j.egypro.2018.09.173. DOI: https://doi.org/10.1016/j.egypro.2018.09.173

AlShafeey M, Csáki C. Evaluating neural network and linear regression photovoltaic power forecasting models based on different input methods. Energy Reports, 2021; 7: 7601-7614. https://doi.org/10.1016/j.egyr.2021.10.125. DOI: https://doi.org/10.1016/j.egyr.2021.10.125

Wu YX, Guo TT, Wang H. Photovoltaic power prediction method based on similar day and BP neutral network. IOP Conference Series: Earth and Environmental Science, 2018; 170: 042016. https://doi.org/10.1088/1755-1315/170/4/042016. DOI: https://doi.org/10.1088/1755-1315/170/4/042016

Zhang Y, Kong LQ. Photovoltaic power prediction based on hybrid modeling of neural network and stochastic differential equation. ISA Transactions, 2021. https://doi.org/10.1016/j.isatra.2021.11.008. DOI: https://doi.org/10.1016/j.isatra.2021.11.008

Natarajan Y, Kannan S, Selvaraj C, Mohanty SN. Forecasting energy generation in large photovoltaic plants using radial belief neural network. Sustainable Computing: Informatics and Systems, 2021; 31: 100578. https://doi.org/10.1016/j.suscom.2021.100578. DOI: https://doi.org/10.1016/j.suscom.2021.100578

Eseye AT, Zhang JH, Zheng DH. Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information. Renewable Energy, 2018; 118: 357-367. https://doi.org/10.1016/j.renene.2017.11.011. DOI: https://doi.org/10.1016/j.renene.2017.11.011

Xun T, Lei SH, Ding XC, Chen K, Huang K, Nie YX. Photovoltaic power forecasting method based on adaptive classification strategy and HO-SVR algorithm. Energy Reports, 2020; 6: 921-928. https://doi.org/10.1016/j.egyr.2020.11.108. DOI: https://doi.org/10.1016/j.egyr.2020.11.108

Pan MZ, Li C, Gao R, Huang YT, You H, Gu TS, Qin F. Photovoltaic power forecasting based on a support vector machine with improved ant colony optimization. Journal of Cleaner Production, 2020; 277: 123948. https://doi.org/10.1016/j.jclepro.2020.123948. DOI: https://doi.org/10.1016/j.jclepro.2020.123948

Niu DX, Wang KK, Sun LJ, Wu J, Xu XM. Short-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: A case study. Applied Soft Computing 2020; 93: 106389. https://doi.org/10.1016/j.asoc.2020.106389. DOI: https://doi.org/10.1016/j.asoc.2020.106389

Meng M, Song CG. Daily Photovoltaic Power Generation Forecasting Model Based on Random Forest Algorithm for North China in Winter. Sustainability 2020, 12: 2247. https://doi.org/10.3390/su12062247. DOI: https://doi.org/10.3390/su12062247

Wang JZ, Zhou YL, Li ZW. Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm. Applied Energy, 2022; 312: 118725. https://doi.org/10.1016/j.apenergy.2022.118725. DOI: https://doi.org/10.1016/j.apenergy.2022.118725

Zang HX, Cheng LL, Ding T, Cheung KW, Wei ZN, Sun GQ. Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning. International Journal of Electrical Power & Energy Systems, 2020; 118: 105790. https://doi.org/10.1016/j.ijepes.2019.105790. DOI: https://doi.org/10.1016/j.ijepes.2019.105790

Wang F, Zhang ZY, Liu C, Yu YL, Pang SL, Duić N, Shafie-khah M, Catalão JPS. Generative adversarial networks and convolutional neural networks based weather classification model for day ahead short-term photovoltaic power forecasting. Energy Conversion and Management, 2019; 181: 443-462. https://doi.org/10.1016/j.enconman.2018.11.074. DOI: https://doi.org/10.1016/j.enconman.2018.11.074

Sharma N, Mangla M, Yadav S, Goyal N, Singh A, Verma S, Saber T. A sequential ensemble model for photovoltaic power forecasting. Computers & Electrical Engineering, 2021; 96: 107484. https://doi.org/10.1016/j.compeleceng.2021.107484. DOI: https://doi.org/10.1016/j.compeleceng.2021.107484

Ahmed R, Sreeram V, Togneri R, Datta A, Arif MD. Computationally expedient Photovoltaic power Forecasting: A LSTM ensemble method augmented with adaptive weighting and data segmentation technique. Energy Conversion and Management, 2022; 258: 115563. https://doi.org/10.1016/j.enconman.2022.115563. DOI: https://doi.org/10.1016/j.enconman.2022.115563

Huang XQ, Li Q, Tai YH, Chen ZQ, Liu J, Shi JS, Liu WM. Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM. Energy, 2022; 246: 123403. https://doi.org/10.1016/j.energy.2022.123403. DOI: https://doi.org/10.1016/j.energy.2022.123403

Mellit A, Massi Pavan A, Lughi V. Deep learning neural networks for short-term photovoltaic power forecasting. Renewable Energy, 2021; 172: 276-288. https://doi.org/10.1016/j.renene.2021.02.166. DOI: https://doi.org/10.1016/j.renene.2021.02.166

Wang ZP, Qu JF, Fang XY, Li H, Zhong T, Ren H. Prediction of early stabilization time of electrolytic capacitor based on ARIMA-Bi_LSTM hybrid model. Neurocomputing, 2020; 403: 63-79. https://doi.org/10.1016/j.neucom.2020.03.054. DOI: https://doi.org/10.1016/j.neucom.2020.03.054

Liu LY, Liu DR, Sun Q, Li HL, Wennersten R. Forecasting power output of photovoltaic system using a BP network method. Energy Procedia, 2017; 142: 780-786. https://doi.org/10.1016/j.egypro.2017.12.126. DOI: https://doi.org/10.1016/j.egypro.2017.12.126

Li YQ, Zhou L, Gao PQ, Yang B, Han YM, Lian C. Short-Term power generation forecasting of a photovoltaic plant based on PSO-BP and GA-BP neural networks, Frontiers in Energy Research, 2022. https://doi.org/10.3389/FENRG.2021.824691. DOI: https://doi.org/10.3389/fenrg.2021.824691

Hu KY, Wang LD, Li WJ, Cao SH, Shen YY. Forecasting of solar radiation in photovoltaic power station based on ground‐based cloud images and BP neural network. IET Generation, Transmission & Distribution, 2021; 16: 333-350. https://doi.org/10.1049/GTD2.12309. DOI: https://doi.org/10.1049/gtd2.12309

Lin GQ, Li LL, Tseng ML, Liu HM, Yuan DD, Tan RR. An improved moth-flame optimization algorithm for support vector machine prediction of photovoltaic power generation. Journal of Cleaner Production, 2020; 253: 119966. https://doi.org/10.1016/j.jclepro.2020.119966. DOI: https://doi.org/10.1016/j.jclepro.2020.119966

Boegli M, Stauffer Y. SVR based PV models for MPC based energy flow management. Energy Procedia, 2017; 122: 133-138. https://doi.org/10.1016/j.egypro.2017.07.317. DOI: https://doi.org/10.1016/j.egypro.2017.07.317

Lin JM, Li HM. A Hybrid K-Means-GRA-SVR model based on feature selection for day-ahead prediction of photovoltaic power generation. Journal of Computer and Communications, 2021; 9: 91-111. https://doi.org/10.4236/JCC.2021.911007. DOI: https://doi.org/10.4236/jcc.2021.911007

Das UK, Tey KS, Seyedmahmoudian M, Mekhilef S, Idris MYI, Van Deventer W, Horan B, Stojcevski A. Forecasting of photovoltaic power generation and model optimization: A review. Renewable and Sustainable Energy Reviews, 2018; 8: 912-928. https://doi.org/10.1016/j.rser.2017.08.017. DOI: https://doi.org/10.1016/j.rser.2017.08.017

VanDeventer W, Jamei E, Thirunavukkarasu, GS, Seyedmahmoudian M, Soon TK, Horan B, Mekhilef S, Stojcevski A. Short-term PV power forecasting using hybrid GASVM technique. Renewable Energy, 2019; 140:367-379. https://doi.org/10.1016/j.renene.2019.02.087. DOI: https://doi.org/10.1016/j.renene.2019.02.087

Seyedmahmoudian M, Jamei E, Thirunavukkarasu GS, Soon TK, Mortimer M, Horan B, Stojcevski A, Mekhilef S. Short-Term Forecasting of the output power of a building-integrated photovoltaic system using a metaheuristic approach. Energies, 2018, 11:1260. https://doi.org/10.3390/en11051260. DOI: https://doi.org/10.3390/en11051260

Downloads

Published

2022-08-05

Issue

Section

Articles

How to Cite

1.
Photovoltaic Power Generation Forecasting Based on the ARIMA-BPNN-SVR Model. Glob. J. Energy. Technol. Res. Updates. [Internet]. 2022 Aug. 5 [cited 2026 Feb. 16];9:18-3. Available from: https://www.avantipublishers.com/index.php/gjetru/article/view/1252

Similar Articles

21-30 of 38

You may also start an advanced similarity search for this article.