Management of Condenser Fan Speed and its Influence on the Split Air Conditioner Performance


Split air conditioners, A/C unit performance, Variable speed condenser fan.

How to Cite

Amr Owes Elsayed. Management of Condenser Fan Speed and its Influence on the Split Air Conditioner Performance. Glob. J. Energ. Technol. Res. Updat. [Internet]. 2019 Dec. 30 [cited 2022 May 21];6(1):41-8. Available from:


 Energy saving is the challenge of decreasing the quantity of energy consumption needed. This can be done by employing reliable and smart control system. In this article, an experimental study has been carried out to investigate the performance of a split air conditioning unit having a variable speed condenser fan. The rate of heat rejection airflow has been controlled according to the outdoor air temperature via a Proportional Integral Differential (PID) controller. The control algorithm allows increasing the condenser fan speed with the increase of outdoor air temperature and vice verse. The maximum rate of air flow of the fan is 0.43 m3/s at 42ºC outdoor air temperature and the minimum flow is 0.28m3/s. To facilitate variation of refrigerant flow rate according to the evaporator load, the traditional capillary tube was replaced with a suitable thermostatic expansion valve and liquid refrigerant reserve. The influence of condenser airflow modulation and its temperature on the air conditioner performance and also on the compressor power consumption has been investigated and presented at different evaporator loads. It has been found that a 10 % reduction in compressor power is achieved by increasing the condenser air flow by about 50%.


Gao CF, Lee WL, Chen H, Locating Room Air-Conditioners at Floor Level for Energy Saving in Residential Buildings. Applied Thermal Engineering 2009; 29(2-3): 310-316.

Hajidavalloo E, Eghtedari H. Performance Improvement of Air-Cooled Refrigeration System by Using Evaporatively Cooled Air Condenser. Int Journal of Refrigeration 2010; 33(5): 982-988.

Wui W, You T, Wang J, Wang B, Shi W, Li X. A novel internally hybrid absorption-compression heat pump for performance improvement. Energy Conversion and Management 2018; 168: 237-251.

Blasco EH, Pitarch M, Peris EN, Corberán JM. Study of different subcooling control strategies in order to enhance the performance of a heat pump. International Journal of Refrigeration 2018; 88: 324-336.

Almasri RA, Almarshoud AF, Omar HM, Esmaeil KK, Alshitawi M. Exergy and Economic Analysis of Energy Consumption in the Residential Sector of the Qassim Region in the Kingdom of Saudi Arabia. Sustainability 2020; 12- 2606: 1-19.

Hu SS, Huang BJ. Study of a High Efficiency Residential Split Water-Cooled Air Conditioner. Applied Thermal Engineering 2005; 25: 1599-1613.

Chen H, Lee WL, Yik FW. Applying Water Cooled Air Conditioners in Residential Buildings in Hong Kong. Energy Conversion and Management 2008; 49: 1416-1423.

Mahlia T, Saidur R. A Review on Test Procedure Energy Efficiency Standards and Energy Labels for Room Air Conditioners and Refrigerator-Freezers. Renewable and Sustainable Energy Reviews 2010; 14(7): 1888-1900.

Jiang ML, Yi Wu J, Xu YX, Wang RZ. Transient Characteristics and Performance Analysis of a Vapor Compression Air Conditioning System with Condensing Heat Recovery. Energy and Buildings 2010; 42(11): 2251-2257.

Yu FW, Chan KT. Advanced Control of Heat Rejection Airflow for Improving the Coefficient of Performance of Air Cooled Chillers. Applied Thermal Engineering 2006; 26: 97-110.

Mohammed FM, Mohammed JA, Jabbar MA. Using Smart Control System to Enhancement the Split Air Conditioning System Performance. Al-Khwarizmi Engineering Journal 2016; 12(4): 36-49.

Kang I, Ho Lee K, Lee JH, Moon JW. Artificial Neural Network–Based Control of a Variable Refrigerant Flow System in the Cooling Season. Energies 2018; 11: 1643.