Advanced Carbon-based Electrodes for Electrochemical Uranium Removal from Aqueous Solutions: Design, Functionalization, and Performance Insights

Authors

  • Liyao Zeng School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
  • Ziyin Xia School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
  • Guanzhen Chen School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
  • Jingyi Wang School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
  • Meng Li School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China https://orcid.org/0009-0009-2314-393X

DOI:

https://doi.org/10.15377/2410-3624.2025.12.6

Keywords:

Electrosorption, Nanostructured carbons, Carbon-based electrodes, Uranium decontamination, Functionalization and doping, Electrochemical uranium removal

Abstract

The removal of uranium from aqueous solutions remains a significant global challenge, and electrochemical technologies represent a potentially efficient and controllable approach for this application. Carbon-based materials are key to the success of these technologies, however, the performance of conventional carbons is limited by low capacity and poor selectivity. This review systematically evaluates recent advances in the design and application of advanced carbon-based electrodes tuned for enhanced uranium uptake in a systematic way. This review covers nanostructured carbons (graphene, carbon nanotubes) for electrosorption enhancement, functionalization and doping for selective electroreduction, and synergistic effects in composites. Analysis of structure-performance relationships reveals design principles for efficient electrodes. Finally, this review summarizes the remaining challenges of selectivity, stability and scalability in electrochemical decontamination, and offer a forward-looking perspective towards future research – including computational design and operando characterization – needed to bridge the gap between laboratory-scale findings and sustainable, large-scale decontamination systems.

References

[1] Mao H, Chen Y, Zhang W, Shao C, Zhang G, Liu S. Self-assembling ZiF-8 on electronegative Galdieria sulphuraria for uranium (VI) adsorption performance study. Se Puri Technol. 2026; 381: 135639. https://doi.org/10.1016/j.seppur.2025.135639 DOI: https://doi.org/10.1016/j.seppur.2025.135639

[2] Chen L, Yang Y, Zhong K, Lu X, He H, Chen X, et al. Overcoming uranium re-dissociation in microbial electrolysis cells: Hydrogen-bond mediated reduction mechanisms in sulfate-reducing bacteria systems. Chem Eng J. 2025; 526: 170803. https://doi.org/10.1016/j.cej.2025.170803 DOI: https://doi.org/10.1016/j.cej.2025.170803

[3] Li J, Jiao C, Lin Y, Li Y, Qian Z, Liu H, et al. Layered charge separation in surface boron doped copper with phosphate groups boosts the electrochemical uranium extraction from seawater. Appl Catal B-Environ. 2024; 347: 123770. https://doi.org/10.1016/j.apcatb.2024.123770 DOI: https://doi.org/10.1016/j.apcatb.2024.123770

[4] Yan S, Li Y, Cao J, Guo H. Upgrading of Ca(NO3)2 waste slag to aragonite nanowhiskers via a facile precipitation-transformation method for uranium adsorption. Chem Eng Res Design. 2025; 213: 221-29. https://doi.org/10.1016/j.cherd.2024.12.007 DOI: https://doi.org/10.1016/j.cherd.2024.12.007

[5] Shuai W, Qin Z, Li J, Jia Y, Liang Y, Wang Y. Uranium photo-precipitation coupled with fulvic acid oxidation under anoxic and oxic conditions. Chem Eng J. 2023; 471: 144554. https://doi.org/10.1016/j.cej.2023.144554 DOI: https://doi.org/10.1016/j.cej.2023.144554

[6] Wu J, Wang J, Qi Y, Zhang Z, Li Y, Chen F, et al. Self-reinforcing extraction of uranium(VI) from wastewater via uranium-incorporated hematite photoelectrochemical system. J Hazard Mater. 2025; 494: 138614. https://doi.org/10.1016/j.jhazmat.2025.138614 DOI: https://doi.org/10.1016/j.jhazmat.2025.138614

[7] Tang Z, Li Y, Tan K, Li C, Liu Z, Zhang C, et al. A sustainable flow electrode capacitive deionization approach for efficient decontamination and uranium recovery from strongly acidic mining wastewater. J Clean Prod. 2025; 528: 146724. https://doi.org/10.1016/j.jclepro.2025.146724 DOI: https://doi.org/10.1016/j.jclepro.2025.146724

[8] Zhang Q, Deng Q, Zhang Y, Xiao Y, Zhang C, Gong H, et al. Simultaneously uranium reduction and organics degradation by a drivingpowers enhanced photocatalytic fuel cell based on a UiO-66-NH2 derived zirconia/N-dopped porous carbon cathode. Appl Catal B-Environ. 2024; 347: 123808. https://doi.org/10.1016/j.apcatb.2024.123808 DOI: https://doi.org/10.1016/j.apcatb.2024.123808

[9] Niu C-P, Zhang C-R, Liu X, Liang R-P, Qiu J-D. Synthesis of propenone-linked covalent organic frameworks via Claisen-Schmidt reaction for photocatalytic removal of uranium. Nat Commu. 2023; 14: 4420. 10.1038/s41467-023-40169-1 DOI: https://doi.org/10.1038/s41467-023-40169-1

[10] Li M, Cen P, Li J, Song J, Wu Q, Han W, et al. Unraveling the degradation mechanism and interaction mechanism of ofloxacin based on reactive oxygen species via electrochemically activating peroxymonosulfate. ACS ES&T Eng. 2024; 4: 1792-1804. 10.1021/acsestengg.4c00100 DOI: https://doi.org/10.1021/acsestengg.4c00100

[11] Xing C, Bernicot B, Monge S, Darcos V, Arrachart G, Pellet-Rostaing S. Recovery of uranium from seawaters by ultra/nano filtration assisted by complexation. Desalination. 2025; 613: 119083. https://doi.org/10.1016/j.desal.2025.119083 DOI: https://doi.org/10.1016/j.desal.2025.119083

[12] Tian M, Wu X, Wang Z, Kou J, Li M, Zhang X, et al. Novel Na+-MXene/GP cathodes: Improving uranium binding and selectivity in wastewater treatment. Desalination. 2025; 616: 119345. https://doi.org/10.1016/j.desal.2025.119345 DOI: https://doi.org/10.1016/j.desal.2025.119345

[13] Liu Y, Liu W, Wang Y, Yuan Q, Meng Y, Luan F. A synergistic bioelectrochemical-photocatalytic system for efficient uranium removal and recovery. J Hazard Mater. 2024; 479: 135739. https://doi.org/10.1016/j.jhazmat.2024.135739 DOI: https://doi.org/10.1016/j.jhazmat.2024.135739

[14] Yang L, Qian Y, Zhang Z, Li T, Lin X, Fu L, et al. A marine bacteria-inspired electrochemical regulation for continuous uranium extraction from seawater and salt lake brine††Electronic supplementary information (ESI) available. Chem Sci. 2024; 15: 4538-46. https://doi.org/10.1039/d4sc00011k DOI: https://doi.org/10.1039/D4SC00011K

[15] Eid MH, Pinjung Z, Mikita V, Bence C, Szűcs P. A novel integration of self-organizing maps and NETPATH inverse modeling to trace uranium and toxic metal contamination risks in West Mecsek, Hungary. J Hazard Mater. 2025; 496: 139291. https://doi.org/10.1016/j.jhazmat.2025.139291 DOI: https://doi.org/10.1016/j.jhazmat.2025.139291

[16] Wei X, Shi X, Yang M, Tan Q, Xu Z, Ma B, et al. Phosphate and illite colloid pose a synergistic risk of enhanced uranium transport in groundwater: A challenge for phosphate immobilization remediation of uranium contaminated environmental water. Water Res. 2024; 255: 121514. https://doi.org/10.1016/j.watres.2024.121514 DOI: https://doi.org/10.1016/j.watres.2024.121514

[17] Chen J, Gao J, Liu Y, Han J, Yan Y, Ma F, et al. Enhancing capacitive deionization system with self-sustaining reduction/precipitation process for uranium recovery from wastewater. Desalination. 2025; 615: 119325. https://doi.org/10.1016/j.desal.2025.119325 DOI: https://doi.org/10.1016/j.desal.2025.119325

[18] Dong T, Jiang X, Xing S, Hu Y, Zhou Y, Li Y, et al. An approach for collaboratively separation and detection of uranium based on novel plastic scintillating resin. Sep Purif Technol. 2024; 340: 126748. https://doi.org/10.1016/j.seppur.2024.126748 DOI: https://doi.org/10.1016/j.seppur.2024.126748

[19] Li M, Bi Y-G, Xiang L, Chen X-T, Qin Y-J, Mo C-H, et al. Improved cathodic oxygen reduction and bioelectricity generation of electrochemical reactor based on reduced graphene oxide decorated with titanium-based composites. Bioresour Technol. 2020; 296: 122319. https://doi.org/10.1016/j.biortech.2019.122319 DOI: https://doi.org/10.1016/j.biortech.2019.122319

[20] Sun J, Hou Z, Wang J, Yang P, Li S, Liu C, et al. A robust amphiphilic ionic covalent organic framework intercalated into functionalized graphene oxide hybrid membranes for ultrafast extraction uranium from wastewater. Water Res. 2024; 265: 122320. https://doi.org/10.1016/j.watres.2024.122320 DOI: https://doi.org/10.1016/j.watres.2024.122320

[21] Zhang H, Cen P, Li J, Li C, Song J, Wu Q, et al. Unraveling degradation mechanism and reaction efficacy of sulfamethoxazole via reactive oxygen species dominated radical process. Appl Catal B-Environ. Energy 2024; 359: 124484. https://doi.org/10.1016/j.apcatb.2024.124484 DOI: https://doi.org/10.1016/j.apcatb.2024.124484

[22] Chen D, Li Y, Zhao X, Shi M, Shi X, Zhao R, et al. Self-standing porous aromatic framework electrodes for efficient electrochemical uranium extraction. ACS Central Sci. 2023; 9: 2326-32. https://doi.org/10.1021/acscentsci.3c01291 DOI: https://doi.org/10.1021/acscentsci.3c01291

[23] Huang Q, Sheng L, Wu T, Huang L, Yan J, Li M, et al. Research progress on the application of carbon-based composites in capacitive deionization technology. Desalination. 2025; 593: 118197. https://doi.org/10.1016/j.desal.2024.118197 DOI: https://doi.org/10.1016/j.desal.2024.118197

[24] Li M, Yu X-L, Li Y-W, Han W, Yu P-F, Lun Yeung K, et al. Investigating the electron shuttling characteristics of resazurin in enhancing bio-electricity generation in microbial fuel cell. Chem Eng J. 2022; 428: 130924. https://doi.org/10.1016/j.cej.2021.130924 DOI: https://doi.org/10.1016/j.cej.2021.130924

[25] Wang D, Wang J, Zhang D, Li J. Efficient remediation and synchronous recovery of uranium by phosphate-functionalized magnetic carbon-based flow electrode capacitive deionization. Water Res. 2025; 281: 123707. https://doi.org/10.1016/j.watres.2025.123707 DOI: https://doi.org/10.1016/j.watres.2025.123707

[26] Parniske J, Froemelt A, Morck T. Modelling competitive adsorption of organic micropollutants onto granular activated carbon in fixed-bed adsorbers for advanced wastewater treatment. Water Res. 2026; 288: 124631. https://doi.org/10.1016/j.watres.2025.124631 DOI: https://doi.org/10.1016/j.watres.2025.124631

[27] Li L, Su L, Gao J, Liu S, Yuan S, Zhou N, et al. Enhanced biofilm-dependent biogas upgrading from waste activated sludge fermentation liquor in microbial electrolysis cells. Water Res. 2025; 268: 122675. https://doi.org/10.1016/j.watres.2024.122675 DOI: https://doi.org/10.1016/j.watres.2024.122675

[28] Li M, Zhou J, Bi Y-G, Zhou S-Q, Mo C-H. Polypyrrole/sewage sludge carbon as low-cost and high-effective catalyst for enhancing hexavalent chromium reduction and bio-power generation in dual chamber microbial fuel cells. Sep Purif Technol. 2021; 256: 117805. https://doi.org/10.1016/j.seppur.2020.117805 DOI: https://doi.org/10.1016/j.seppur.2020.117805

[29] Zong S, Wang L, Yao Q, Cao Y, Hu M, Yan W. Honeycomb-like porous carbon frameworks with ultrathin carbon shells and enlarged interlayer spacing as anode for sodium-ion storage. Electrochim Acta. 2025; 544: 147676. https://doi.org/10.1016/j.electacta.2025.147676 DOI: https://doi.org/10.1016/j.electacta.2025.147676

[30] Kowalczyk P, Neimark AV, Furmaniak S, Terzyk AP, Kaneko K. Graphene-domain theory for high-surface-area nanoporous carbons: Beyond the BET method. Carbon 2025; 245: 120737. https://doi.org/10.1016/j.carbon.2025.120737 DOI: https://doi.org/10.1016/j.carbon.2025.120737

[31] Wang J, Liu X, Li D, Liu J, Shi Z, Zang Y, Aoki T. Innovative amino acid-porphyrin decorated hyper-crosslinked polymers for efficient electrosorption of uranium (VI) in aqueous solution. Sep Purif Technol. 2026; 380: 135442. https://doi.org/10.1016/j.seppur.2025.135442 DOI: https://doi.org/10.1016/j.seppur.2025.135442

[32] Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008; 7: 845-54. https://doi.org/10.1038/nmat2297 DOI: https://doi.org/10.1038/nmat2297

[33] Chmiola J, Largeot C, Taberna P-L, Simon P, Gogotsi Y. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew Chem Int Ed. 2008; 47: 3392-5. https://doi.org/10.1002/anie.200704894 DOI: https://doi.org/10.1002/anie.200704894

[34] Wu H, Zhang C, Qiu Y, Sun X-F. Synergistic enhancement of electric double layers and faradaic reactions in capacitive deionization: The role of NTP@C composite. Chem Eng J. 2024; 496: 153491. https://doi.org/10.1016/j.cej.2024.153491 DOI: https://doi.org/10.1016/j.cej.2024.153491

[35] Wang H, Wu G, Xiao Y, Zhang Z, Huang L, Li M, et al. Exploration of selective copper ion separation from wastewater via capacitive deionization with highly effective 3D carbon framework-anchored Co(PO3)2 electrode. Sep Purif Technol. 2024; 336: 126205. https://doi.org/10.1016/j.seppur.2023.126205 DOI: https://doi.org/10.1016/j.seppur.2023.126205

[36] Tung VC, Allen MJ, Yang Y, Kaner RB. High-throughput solution processing of large-scale graphene. Nat Nano. 2009; 4: 25-29. https://doi.org/10.1038/nnano.2008.329 DOI: https://doi.org/10.1038/nnano.2008.329

[37] Bai J, Chu J, Yin X, Wang J, Tian W, Huang Q, et al. Synthesis of amidoximated polyacrylonitrile nanoparticle/graphene composite hydrogel for selective uranium sorption from saline lake brine. Chem Eng J. 2020; 391: 123553. https://doi.org/10.1016/j.cej.2019.123553 DOI: https://doi.org/10.1016/j.cej.2019.123553

[38] Kumar N. Uranyl (UO22+) structuring and dynamics at graphene/electrolyte interface. Phys Chem Chem Phys. 2024; 26: 20799-806. https://doi.org/10.1039/D4CP02108H DOI: https://doi.org/10.1039/D4CP02108H

[39] Lai X, Chen Z, Chen C, Chen C, Sun D. 2D ultrathin sheet-like SiO2 embedded reduced graphene oxide anodes for improved lithium kinetics and low-temperature storage. Chem Eng J. 2025: 170715. https://doi.org/10.1016/j.cej.2025.170715 DOI: https://doi.org/10.1016/j.cej.2025.170715

[40] Colak O, Nicolaï A, Meunier V, Demirel MC. Molecular dynamics simulations of 2D-layered graphene sheets with tandem repeat proteins. Carbon. 2024; 228: 119332. https://doi.org/10.1016/j.carbon.2024.119332 DOI: https://doi.org/10.1016/j.carbon.2024.119332

[41] Wu Q, Dai L, Ma J, Wang X, Yao S, Qin C, et al. Flame-retardant three-dimensional polyvinyl alcohol/microcrystalline cellulose/graphene oxide composite for fire alarm system. Chem Eng J. 2025; 522: 167639. https://doi.org/10.1016/j.cej.2025.167639 DOI: https://doi.org/10.1016/j.cej.2025.167639

[42] Liu X, Kong Z, Yuan M, Xu G, Cao R, Xu A, et al. Three dimensional topological porous carbon/carbon nanotube/graphene matrix decorated with CoFe alloy for lithium sulfur batteries. Carbon. 2025; 239: 120322. https://doi.org/10.1016/j.carbon.2025.120322 DOI: https://doi.org/10.1016/j.carbon.2025.120322

[43] Islam MS, Sproule D, Yohans J, Chenananporn F, Yim E, Gupta A, et al. Citric acid and cellulose derivatives-based superabsorbent hydrogels (SAH) as sustainable material alternatives for personal hygiene products. Chem Eng J. 2025: 170721. https://doi.org/10.1016/j.cej.2025.170721 DOI: https://doi.org/10.1016/j.cej.2025.170721

[44] Parale VG, Choi H, Phadtare VD, Dhavale RP, Kim Y, et al. Strong yet mechanically flexible thick necked aerogels fabricated via in situ-catalyzed epoxy-thiol polymerization with necking enhancement: A finite element simulation and wastewater treatment applications. Chem Eng J. 2025: 170739. https://doi.org/10.1016/j.cej.2025.170739 DOI: https://doi.org/10.1016/j.cej.2025.170739

[45] Ding Y, Yang Q, Liu J, Lv X, Wang X, Li S. Bridge-enhanced green PBAT/biomass bimodal cellular foam: Synergistic dual-porosity engineering for shrinkage-free stability, excellent compressive resilience and eco-scalable manufacturing. Chem Eng J. 2025; 522: 167922. https://doi.org/10.1016/j.cej.2025.167922 DOI: https://doi.org/10.1016/j.cej.2025.167922

[46] Wu J, Li M, Zhang T, Zhang J, Dong J, Zhao X, et al. Facile and innovative co-gel route for the preparation of highly flexible polyimide-silica hybrid aerogel films. Polymer. 2025: 129348. https://doi.org/10.1016/j.polymer.2025.129348 DOI: https://doi.org/10.1016/j.polymer.2025.129348

[47] Liu P, Xu M, Wang W, Song Y, Wang F, Peng X, et al. Antibacterial porous Poly(Tannin-Urethane) network buoys achieve selective uranium reduction and extraction from seawater. Sep Purif Technol. 2025; 362: 131681. https://doi.org/10.1016/j.seppur.2025.131681 DOI: https://doi.org/10.1016/j.seppur.2025.131681

[48] Zhao Q-Q, Chen Y-R, Wang X, Wang J-Y, Fan Y-T, Li Y, et al. Synergistic anti-protonation and hierarchical porosity in 3D COFs enable efficient uranium capture from strongly acidic wastewater. Sep Purif Technol. 2025; 377: 134309. https://doi.org/10.1016/j.seppur.2025.134309 DOI: https://doi.org/10.1016/j.seppur.2025.134309

[49] Bai X, Wang P, Feng R, Pan J, Sun Y. Underwater-adhesive and mechanically reinforced porous amidoxime hydrogel for fast and selective uranium extraction from seawater. Desalination. 2025; 615: 119275. https://doi.org/10.1016/j.desal.2025.119275 DOI: https://doi.org/10.1016/j.desal.2025.119275

[50] Kong W, Ge X, Kong D, Liu C, Sun J, Zhu X, et al. Highly dispersed ultrasmall BiOCl nanoclusters on graphene sheets as high-performance anion-capture electrode for hybrid capacitive deionization. Desalination. 2024; 573: 117222. https://doi.org/10.1016/j.desal.2023.117222 DOI: https://doi.org/10.1016/j.desal.2023.117222

[51] Wang L, Wang Y, He S, Wen J, Du Q, Zhang Y, et al. A 3D porous AgNWs/graphene/PDMS sensor enabling multifunctional applications for gesture recognition and health monitoring. Chem Eng J. 2025; 525: 170111. https://doi.org/10.1016/j.cej.2025.170111 DOI: https://doi.org/10.1016/j.cej.2025.170111

[52] Ren Q, Wang Y, Wang Y, Feng Z, Du Y, Wang C, et al. Inspiring the potential of graphene oxide aerogel for uranium(VI) electrosorption: A precursor reconfiguration strategy and synergistic integration with polyethyleneimine. Desalination. 2025; 609: 118883. https://doi.org/10.1016/j.desal.2025.118883 DOI: https://doi.org/10.1016/j.desal.2025.118883

[53] Wang D, Zhou J, Zhang Y, Zhang J, Liang J, Zhang J, et al. The electrosorption of uranium (VI) onto the modified porous biocarbon with ammonia low-temperature plasma: Kinetics and mechanism. Chem Eng J. 2023; 463: 142413. https://doi.org/10.1016/j.cej.2023.142413 DOI: https://doi.org/10.1016/j.cej.2023.142413

[54] Shuang M, Liu L, Li X, Zhou L, Li J, Zhong Z, et al. Fabrication of polyaniline-modified CNT/CS carbon aerogel composite electrode and its electrosorption performance of uranium. Sep Purif Technol. 2025; 377: 134296. https://doi.org/10.1016/j.seppur.2025.134296 DOI: https://doi.org/10.1016/j.seppur.2025.134296

[55] Xu F, Chang L, Duan X, Bai W, Sui X, Zhao X. A novel layer-by-layer CNT/PbO2 anode for high-efficiency removal of PCP-Na through combining adsorption/electrosorption and electrocatalysis. Electrochim Acta. 2019; 300: 53-66. https://doi.org/10.1016/j.electacta.2019.01.090 DOI: https://doi.org/10.1016/j.electacta.2019.01.090

[56] Jing S, Cheng Q, Liang H, Cheng R, Brouzgou A, Tsiakaras P. Persulfate activation over B, N co-doped carbon nanotubes encapsulated with Fe3C (Fe3C@BN-CNT-x) studied for degradation of Rhodamine B. Carbon. 2025; 243: 120447. https://doi.org/10.1016/j.carbon.2025.120447 DOI: https://doi.org/10.1016/j.carbon.2025.120447

[57] Hayashi K, Nakano T, Inoue Y. Enhancing thermal conduction properties of vertically aligned CNT forests by reducing interfacial thermal resistance using an aluminum interlayer. Carbon. 2025; 238: 120256. https://doi.org/10.1016/j.carbon.2025.120256 DOI: https://doi.org/10.1016/j.carbon.2025.120256

[58] Du L, Zhang J, Zhou Q, Li Y, Zhang Y, Wang X, et al. Hierarchical CNTs/PyC/SiBCN foam with tunable microwave absorption properties conspired by melamine-derived pyrolyzed carbon and carbon nanotubes. Carbon. 2025; 234: 120030. https://doi.org/10.1016/j.carbon.2025.120030 DOI: https://doi.org/10.1016/j.carbon.2025.120030

[59] Lin X, Su Z, Geng Y, Wang L, Li Z, Liu H, et al. Core function and mechanism of electrospun carbon nanofiber aerogels/CNTs for accelerating electron transfer efficiency in microbial fuel cell. J Environ Chem Eng. 2025; 13: 119024. https://doi.org/10.1016/j.jece.2025.119024 DOI: https://doi.org/10.1016/j.jece.2025.119024

[60] Zou H, Feng Y, Qiu L. Interfacial heat conduction enhancement mechanism between CNTs encapsulated with LCC. Chem Eng J. 2025; 523: 168842. https://doi.org/10.1016/j.cej.2025.168842 DOI: https://doi.org/10.1016/j.cej.2025.168842

[61] Ma C, Wang G, Feng T, Zhao G. In-situ reaction interface strengthening derived strong PLA/ESO/CNTs composites with outstanding photo-induced shape memory performance. Chem Eng J. 2025; 522: 168023. https://doi.org/10.1016/j.cej.2025.168023 DOI: https://doi.org/10.1016/j.cej.2025.168023

[62] Li G, Zuo L, Zhang W, Shi Y, Xu K, Feng Z, et al. N-doped CNTs hierarchical structure anodes promote rapid adsorption and efficient electrochemical degradation of methyl methacrylate. Sep Purif Technol. 2026; 382: 135754. https://doi.org/10.1016/j.seppur.2025.135754 DOI: https://doi.org/10.1016/j.seppur.2025.135754

[63] Wu W, Wang H, Wang P, Cheng Y, Fang Y, Guo J, et al. Hierarchical structure of 1D spiky-like CoN-CNTs@PANI nanotubes supported on 2D Ti3C2Tx nanosheets for high-performance zinc-ion capacitors. Chem Eng J. 2025; 525: 169946. https://doi.org/10.1016/j.cej.2025.169946 DOI: https://doi.org/10.1016/j.cej.2025.169946

[64] Zhang Y, Farnood R. A joule-heated PTFE-CNT composite membrane fabricated by solution blow spinning for enhanced ammonia recovery. Sep Purif Technol. 2026; 382: 135660. https://doi.org/10.1016/j.seppur.2025.135660 DOI: https://doi.org/10.1016/j.seppur.2025.135660

[65] Wang D, Yang J, Huo X, Wang G, Ma S. Reduction of electric arc furnace dust and preparation of biomass-derived porous activated carbon: Synergy between biomass activation and waste recycling. J Environ Chem Eng. 2025; 13: 120315. https://doi.org/10.1016/j.jece.2025.120315 DOI: https://doi.org/10.1016/j.jece.2025.120315

[66] Yang Y, Wang Z, Hu Z, Ma L, Tao R. Biomass-derived hydrothermal carbonization carbon: a carbon-negative photocatalytic platform. Bioresour Technol. 2026; 440: 133405. https://doi.org/10.1016/j.biortech.2025.133405 DOI: https://doi.org/10.1016/j.biortech.2025.133405

[67] Wang R, Dong H, Li X, Zhou L, Zhu W, Chen T. Biomass encapsulated ZIF-8-derived ZnO carbon aerogels for efficient uranium extraction by synergistic adsorption-photoreduction. Chem Eng J. 2023; 478: 147331. https://doi.org/10.1016/j.cej.2023.147331 DOI: https://doi.org/10.1016/j.cej.2023.147331

[68] Yang YW, Liu J, Huang J, Zhang CR, Xiao SJ, Shao XX, et al. Deep eutectic solvent-mediated green synthesis of phosphorylated biomass adsorbents for high-efficient uranium removal from uranium tailings wastewater. J Environ Chem Eng. 2025; 13: 118638. https://doi.org/10.1016/j.jece.2025.118638 DOI: https://doi.org/10.1016/j.jece.2025.118638

[69] Li X, Wang H, Huang J, Meng L, Li J, Huang M. Advances in the application of metal–organic frameworks(MOFs)for carbon capture and catalytic conversion. J Environ Chem Eng. 2025; 13: 120065. https://doi.org/10.1016/j.jece.2025.120065 DOI: https://doi.org/10.1016/j.jece.2025.120065

[70] Liu Y, Wang L, Ma Q, Xu X, Gao X, Zhu H, et al. Simultaneous generation of residue-free reactive oxygen species and bacteria capture for efficient electrochemical water disinfection. Nat Commu. 2024; 15: 10175. https://doi.org/10.1038/s41467-024-53174-9 DOI: https://doi.org/10.1038/s41467-024-53174-9

[71] Song J, Li C, Zhao X, Liu R, Han R, Jiang K, et al. Mg Fe- layered double hydroxides (LDHs) modified electrode enhanced capacitive deionization for simultaneous phosphorus recovery and copper ions removal. J Environ Chem Eng. 2024; 12: 112145. https://doi.org/10.1016/j.jece.2024.112145

[72] Song J, Li C, Zhao X, Liu R, Han R, Jiang K, et al. Mg Fe- layered double hydroxides (LDHs) modified electrode enhanced capacitive deionization for simultaneous phosphorus recovery and copper ions removal. J Environ Chem Eng. 2024; 12: 112145. https://doi.org/10.1016/j.jece.2024.112145 DOI: https://doi.org/10.1016/j.jece.2024.112145

[73] Hussien M, Mohamed HO, Jadhav DA, Bahaa A, Jo S-M, Jang J-H, et al. Synergistic integration of dark fermentation and microbial electrolysis cells for hydrogen production and sustainable swine manure treatment. Int Hydrogen Energy 2025; 115: 299-309. https://doi.org/10.1016/j.ijhydene.2025.02.453 DOI: https://doi.org/10.1016/j.ijhydene.2025.02.453

[74] Li S, Huang X, Teng C, Xue X, Ma H, Zhang B, et al. Multifunctional Ti₃C₂/g-C₃N₄-PAO hydrogel (PTCH) for closed-loop uranium recycling: Synergistic adsorption, self-reporting sensing, and solar-driven photocatalytic recovery. Chem Eng J. 2025; 521: 167131. https://doi.org/10.1016/j.cej.2025.167131 DOI: https://doi.org/10.1016/j.cej.2025.167131

[75] Shi L, Wu Y, Chang Z, Jiang P, Hua Y, Shi Q, et al. Lewis acid-base synergy in Co3O4/P-PHI S-scheme heterojunction for photocatalytic aerobic uranium reduction. Appl. Catal. B-Environ. Energy 2025; 378: 125618. https://doi.org/10.1016/j.apcatb.2025.125618 DOI: https://doi.org/10.1016/j.apcatb.2025.125618

[76] Zhang Y, Li Y, Zhou X, Hu E, Wang H, Wang Q, et al. Mechanochemical synthesis of ca-Al-P composite precipitants for efficient purification of uranium-containing wastewater. Sep Purif Technol. 2025: 382(pt 5): 135973. https://doi.org/10.1016/j.seppur.2025.135973 DOI: https://doi.org/10.1016/j.seppur.2025.135973

[77] Guo S, Chang F, Peng G, Cao P, Lu W, Lu Y, et al. δ-MnO2 nanoplates@N-doped hollow carbon spheres for efficient uranium extraction via coordination-electrostatic synergy. Chem Eng J. 2025; 521: 166677. https://doi.org/10.1016/j.cej.2025.166677 DOI: https://doi.org/10.1016/j.cej.2025.166677

[78] Duan Y-t, Xu X, Niu L, Wang Z, Huang X-g, Zheng C-l. Study on the mechanism and stability of microbially induced struvite precipitation (MISP) for enhanced immobilization of uranium. J Clean Prod. 2024; 449: 141536. https://doi.org/10.1016/j.jclepro.2024.141536 DOI: https://doi.org/10.1016/j.jclepro.2024.141536

[79] Li M, Chen L, Zhong K, He H, Chen X, Lu X, et al. Harnessing nanomaterial-driven electron transfer for enhanced uranium recovery and toxicity mitigation in bioelectrochemical systems. Bioresour Technol. 2025; 433: 132757. https://doi.org/10.1016/j.biortech.2025.132757 DOI: https://doi.org/10.1016/j.biortech.2025.132757

[80] Wang S, Zhang P, Wang Z, Wang J, Jiang C, Yu J, et al. Amidoxime-functionalized COF nanosheet/poly(amidoxime) carbon electrode for efficient electrochemical uranium extraction. Sep Purif Technol. 2026; 380: 135220. https://doi.org/10.1016/j.seppur.2025.135220 DOI: https://doi.org/10.1016/j.seppur.2025.135220

[81] Yi T, Huang J-l, Cen Z-h, Ji Y-w, Liu S-h. N/S co-doped carbon nanosheets for the efficient electrochemical extraction of uranium from seawater. New Carbon Mater. 2024; 39: 1108-16. https://doi.org/10.1016/S1872-5805(24)60885-1 DOI: https://doi.org/10.1016/S1872-5805(24)60885-1

[82] Mamaril GSS, de Luna MDG, Bindumadhavan K, Ong DC, Pimentel JAI, Doong R-A. Nitrogen and fluorine co-doped 3-dimensional reduced graphene oxide architectures as high-performance electrode material for capacitive deionization of copper ions. Sep Purif Technol. 2021; 272: 117559. https://doi.org/10.1016/j.seppur.2020.117559 DOI: https://doi.org/10.1016/j.seppur.2020.117559

[83] Liao Y, Lei R, Chen G, Shen C, Mei Z, Zhao J, et al. Efficient U(VI) capture co-driven by multiple synergistic mechanisms in an advanced asymmetrical photoelectrocatalytic system. Appl Surface Sci. 2024; 654: 159482. https://doi.org/10.1016/j.apsusc.2024.159482 DOI: https://doi.org/10.1016/j.apsusc.2024.159482

[84] Qin J, Zhao W, Zhao W, Cheng G, Huang X, Liu Y, et al. Efficient and selective separation of uranium(VI) from natural waters by MgAl-LDH/CNT composites: Performance evaluation and adsorption mechanism. J Water Process Eng. 2025; 79: 109014. https://doi.org/10.1016/j.jwpe.2025.109014 DOI: https://doi.org/10.1016/j.jwpe.2025.109014

[85] Guo D, Yan C, Zhu Y, Huang B, Qian Y, Jin T. Phytic acid-induced amorphous and porous transformation of MnO2@GO with enhanced capacitive performance for efficient uranium removal via capacitive deionization. J Environ Chem Eng. 2025; 13: 116672. https://doi.org/10.1016/j.jece.2025.116672 DOI: https://doi.org/10.1016/j.jece.2025.116672

[86] Mishra B, Biswal S, Chakraborty S, Tripathi BP. Probing the efficiency of α-amino methylphosphonic acid functionalized Ti-MOF over the sulfonic modification strategy for the Uranium(VI) extraction. Sep Purif Technol. 2025; 364: 132435. https://doi.org/10.1016/j.seppur.2025.132435 DOI: https://doi.org/10.1016/j.seppur.2025.132435

[87] Bi C, Zhang C, Ma F, Zhang X, Yang M, Nian J, et al. Growth of a mesoporous Zr-MOF on functionalized graphene oxide as an efficient adsorbent for recovering uranium (VI) from wastewater. Micropor Mesopor Mat. 2021; 323: 111223. https://doi.org/10.1016/j.micromeso.2021.111223 DOI: https://doi.org/10.1016/j.micromeso.2021.111223

[88] Sun F, Yang Y, Zhang Z, He W, Chen J, Tang M. Synergistic uranium (VI) remediation and bioenergy recovery via polyaniline-derived covalent organic framework - carbon nanotube (PANI@COF-CNT) integrated sludge microbial fuel cell (SMFC): Mechanisms and microbial adaptation. J Environ Chem Eng. 2025; 13: 118598. https://doi.org/10.1016/j.jece.2025.118598 DOI: https://doi.org/10.1016/j.jece.2025.118598

[89] Xue Y, Feng X, Wang J, Gao J, Zhang L, Chen Q, et al. Effective removal of uranium (VI) with a SDBS doped PPy-SUS304 electrode from alkaline wastewater using electrodeposition strategy. Process Saf Environ. 2024; 190: 233-244. https://doi.org/10.1016/j.psep.2024.06.124 DOI: https://doi.org/10.1016/j.psep.2024.06.124

[90] Tang W, Li D, Zhang X, Guo F, Cui C, Pan M, et al. A modified freezing-casted conductive hierarchical porous polymer composite electrode for electrochemical extraction of uranium from water. Sep Purif Technol. 2023; 319: 124087. https://doi.org/10.1016/j.seppur.2023.124087 DOI: https://doi.org/10.1016/j.seppur.2023.124087

[91] Xu G, Liu X, Han J, Shao K, Yang H, Yuan J, et al. Insights into the enhanced uranium reduction efficiency through extracellular polymeric substances from Desulfovibrio vulgaris UR1 induced by mediating materials. Bioresour Technol. 2025; 421: 132143. https://doi.org/10.1016/j.biortech.2025.132143 DOI: https://doi.org/10.1016/j.biortech.2025.132143

[92] Xie C, Zhang Q, Zeng Q, Zhang Q, Liu Y, Tang G, et al. Highly-efficient uranium reduction, organic oxidation and electricity generation via a solar-driven wastewater resourceization system with a PANI/CF cathode. Chem Eng J. 2024; 480: 148363. https://doi.org/10.1016/j.cej.2023.148363 DOI: https://doi.org/10.1016/j.cej.2023.148363

[93] Zhang Y, Gao Y, Deng R, Qin Z, Shi F, Zeng J, et al. Effective charge separation in CdS@PANI heterostructure for ultrafast visible light-driven photocatalytic reduction of uranium(VI). Sep Purif Technol. 2025; 354: 129331. https://doi.org/10.1016/j.seppur.2024.129331 DOI: https://doi.org/10.1016/j.seppur.2024.129331

[94] Yang S, Yu H, Ma M, Li X, Sheng T, Weng J, et al. Low-tortuosity COFs-functionalized carbonized wood electrodes for efficient electrochemical extraction of uranium(VI). Desalination. 2025; 615: 119308. https://doi.org/10.1016/j.desal.2025.119308 DOI: https://doi.org/10.1016/j.desal.2025.119308

[95] Li S, Zhao L, Wang S, Li C, Cai L, Lv S, et al. Covalently anchoring phosphorus nitride imide on carbon nanotubes for efficient electrochemical extraction of uranium. Chem Eng J. 2024; 499: 156076. https://doi.org/10.1016/j.cej.2024.156076 DOI: https://doi.org/10.1016/j.cej.2024.156076

[96] Wang J, Yao R, Li Y, Lu Z, Yang B, Wu Z, et al. Planar-coordination-induced precipitation by hydrazone-bridged clusters enables uranium–rare earth separation and high-purity uranium recovery from nuclear wastewater. J Hazard. Mater. 2025; 499: 140233. https://doi.org/10.1016/j.jhazmat.2025.140233 DOI: https://doi.org/10.1016/j.jhazmat.2025.140233

[97] Smolenski V, Novoselova A, Osipenko A, Maershin A. Thermodynamics and separation factor of uranium from lanthanum in liquid eutectic gallium-indium alloy/molten salt system. Electrochim Acta. 2014; 145: 81-85. https://doi.org/10.1016/j.electacta.2014.08.081 DOI: https://doi.org/10.1016/j.electacta.2014.08.081

[98] Huang M, Xie L, Wang Y, He H, Yu H, Cui J, et al. Efficient uranium electrochemical deposition with a functional phytic Acid-Doped Polyaniline/Graphite sheet electrode by Adsorption-electrodeposition strategy. Chem Eng J. 2023; 457: 141221. https://doi.org/10.1016/j.cej.2022.141221 DOI: https://doi.org/10.1016/j.cej.2022.141221

[99] Wang Y, Wang Y, Ren Q, Feng Z, Li Y, Du Y, et al. Unlocking the potential of cotton-derived carbon aerogel for uranium extraction from real radioactive wastewater: A path to amidoxime and polyguanidine modification. Chem Eng J. 2025; 519: 165635. https://doi.org/10.1016/j.cej.2025.165635 DOI: https://doi.org/10.1016/j.cej.2025.165635

[100] Cao R, Zhang J, Wang D, Sun F, Li N, Li J. Electrodeposition cobalt sulfide nanosheet on laser-induced graphene as capacitive deionization electrodes for uranium adsorption. Chem Eng J. 2023; 461: 142080. https://doi.org/10.1016/j.cej.2023.142080 DOI: https://doi.org/10.1016/j.cej.2023.142080

[101] Wang H, Yuan X, Wu Y, Chen X, Leng L, Wang H, et al. Facile synthesis of polypyrrole decorated reduced graphene oxide–Fe3O4 magnetic composites and its application for the Cr(VI) removal. Chem Eng J. 2015; 262: 597-606. https://doi.org/10.1016/j.cej.2014.10.020 DOI: https://doi.org/10.1016/j.cej.2014.10.020

[102] Ren Q, Xia H, Wang Y, Lv J, Yuan D, Liu Y, et al. Novel malonamide-amidoxime bifunctional polymers decorated graphene oxide/chitosan electrode for enhancing electrosorptive removal of uranium(VI). Sep Purif Technol. 2024; 330: 125292. https://doi.org/10.1016/j.seppur.2023.125292 DOI: https://doi.org/10.1016/j.seppur.2023.125292

[103] Cheng Y, Xu Y, Mao H, Zhou J, Liu S, Chen W, et al. Nitrogen-doped carbon nanotube encapsulated Co9S8 composite cathode for high-selective capacitive extraction of uranium (VI) from radioactive wastewater. Sep Purif Technol. 2024; 342: 127020. https://doi.org/10.1016/j.seppur.2024.127020 DOI: https://doi.org/10.1016/j.seppur.2024.127020

[104] Cui W-R, Zhang C-R, Jiang W, Li F-F, Liang R-P, Liu J, et al. Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium. Nat. Commu. 2020; 11: 436. https://doi.org/10.1038/s41467-020-14289-x DOI: https://doi.org/10.1038/s41467-020-14289-x

[105] Liu B, Liu F, Lu D, Zhang S, Zhang C, Gao Z, et al. Metal-organic framework assembly derived hierarchically ordered porous carbon for oxygen reduction in both alkaline and acidic media. Chem Eng J. 2022; 430: 132762. https://doi.org/10.1016/j.cej.2021.132762 DOI: https://doi.org/10.1016/j.cej.2021.132762

[106] Yao W, Ni S, Yin X, Liu Y, Wang W, Zhao Y, et al. Self-driven and self-cleaning electrochemical system for energy-efficient and high-selectivity uranium extraction. Adv Funct Mater. 2025; e19252 (epub ahead). https://doi.org/10.1002/adfm.202519252 DOI: https://doi.org/10.1002/adfm.202519252

[107] Liu X, Liu Y, Wang Y, Yuan D, Wang C, Liu J. Efficient electrosorption of uranium(VI) by B, N, and P co-doped porous carbon materials containing phosphate functional groups. J Solid State Electrochem. 2021; 25: 2443-2454. https://doi.org/10.1007/s10008-021-05029-2 DOI: https://doi.org/10.1007/s10008-021-05029-2

Downloads

Published

2025-12-19

Issue

Section

Articles

How to Cite

1.
Advanced Carbon-based Electrodes for Electrochemical Uranium Removal from Aqueous Solutions: Design, Functionalization, and Performance Insights. Glob. Environ. Eng. [Internet]. 2025 Dec. 19 [cited 2026 Feb. 11];12:82-98. Available from: https://www.avantipublishers.com/index.php/tgevnie/article/view/1742

Similar Articles

21-29 of 29

You may also start an advanced similarity search for this article.