Recent Progress in Using Peroxymonosulfate for the Treatment of Organic Wastewater – A Brief Review

Authors

  • Nannan Wang Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, PR China https://orcid.org/0000-0001-8995-5302
  • Ye Yang Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, PR China
  • Kai Wang Department of Energy Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, PR China
  • Xu Liu Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, PR China
  • Zishan Hou Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, PR China
  • Xiangyu Liu Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, PR China
  • Siquan Zou Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, PR China
  • Zaixing Li Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, PR China

DOI:

https://doi.org/10.15377/2410-3624.2025.12.4

Keywords:

Catalysts, Activation, Reactive oxygen species generation, Degradation of organic contaminants

Abstract

In recent years, peroxymonosulfate advanced oxidation processes (PMS-AOPs) have become an attractive method for the treatment of refractory organic wastewater, relying on their ability to generate highly oxidizing active species (SO4·-, ·OH, and 1O2, etc.). In this review, the characteristics of PMS-AOPs are firstly introduced, followed by a systematic introduction of peroxymonosulfate (PMS) activation methods, including energy-assisted activation, metal-based material activation, carbon-based material activation, and composite system activation. Subsequently, the effects of critical parameters (wastewater pH, reaction temperature, PMS dosage, catalyst loading, inorganic ions and natural organic matter, and reaction time) on the performance of PMS-AOPs were discussed. Furthermore, the working mechanisms of PMS in PMS-AOPs were proposed, and finally, potential research directions in the near future were suggested. This review provides fundamental analysis and discussion of PMS-AOPs in the treatment of refractory organic wastewater.

References

Peng FJ, Feng XJ, Li S, Yu XL, Chen J, Liu SS, et al. Removal of emerging organic contaminants in a subsurface wastewater infiltration system: A preliminary study of microbial mechanism. Water Res. 2025; 284(11): 123960. https://doi.org/10.1016/j.watres.2025.123960 DOI: https://doi.org/10.1016/j.watres.2025.123960

Abonyi MN, Obi CC, Nwabanne JT. Degradation of organic pollutants in wastewater using MOF-based catalysts: A review. Next Materials. 2025; 8: 100696. https://doi.org/10.1016/j.nxmate.2025.100696 DOI: https://doi.org/10.1016/j.nxmate.2025.100696

Aasli B, El Messaoudi N, Miyah Y, Benjelloun M, Georgin J, Franco DSP, et al. A comprehensive review of the use of urea-formaldehyde resin composites for the adsorption of organic and inorganic pollutants from wastewater. Nano-Struct Nano-Objects. 2025; 43: 101495. https://doi.org/10.1016/j.nanoso.2025.101495 DOI: https://doi.org/10.1016/j.nanoso.2025.101495

Yin Z, Li Z, Deng Y, Xue M, Chen Y, Ou J, et al. Multifunctional CeO2-coated pulp/cellulose nanofibers (CNFs) membrane for wastewater treatment: Effective oil/water separation, organic contaminants photodegradation, and anti-bioadhesion activity. Ind Crops Prod. 2023; 197: 116672. https://doi.org/10.1016/j.indcrop.2023.116672 DOI: https://doi.org/10.1016/j.indcrop.2023.116672

Xiangyu B, Chao L, Shilong H, jiping Z, Hu J. Combining advanced oxidation processes with biological processes in organic wastewater treatment: Recent developments, trends, and advances. Desalin Water Treat. 2025; 323: 101263. https://doi.org/10.1016/j.dwt.2025.101263 DOI: https://doi.org/10.1016/j.dwt.2025.101263

Palas B. Catalytic performance of FeCo2O4 spinel cobaltite for degradation of ethylparaben in a peroxymonosulfate activation process: Response surface optimization, reaction kinetics and cost estimation. J Mol Struct. 2025; 1322: 140340. https://doi.org/10.1016/j.molstruc.2024.140340 DOI: https://doi.org/10.1016/j.molstruc.2024.140340

Zhao W, Shen Q, Nan T, Zhou M, Xia Y, Hu G, et al. Cobalt-based catalysts for heterogeneous peroxymonosulfate (PMS) activation in degradation of organic contaminants: Recent advances and perspectives. J Alloys Compd. 2023; 958: 170370. https://doi.org/10.1016/j.jallcom.2023.170370 DOI: https://doi.org/10.1016/j.jallcom.2023.170370

Kohantorabi M, Moussavi G, Giannakis S. A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants. Chem Eng J. 2021; 411: 127957. https://doi.org/10.1016/j.cej.2020.127957 DOI: https://doi.org/10.1016/j.cej.2020.127957

Peng Y, Tang H, Yao B, Gao X, Yang X, Zhou Y. Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A Review. Chem Eng J. 2021; 414: 128800. https://doi.org/10.1016/j.cej.2021.128800 DOI: https://doi.org/10.1016/j.cej.2021.128800

Tian H, Li C, Wang Z, Zhao S, Xu Y, Wang S. Polycyclic aromatic hydrocarbons degradation mechanisms in methods using activated persulfate: Radical and non-radical pathways. Chem Eng J. 2023; 473: 145319. https://doi.org/10.1016/j.cej.2023.145319 DOI: https://doi.org/10.1016/j.cej.2023.145319

Wang J, Wang S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem Eng J. 2018; 334: 1502-1517. https://doi.org/10.1016/j.cej.2017.11.059 DOI: https://doi.org/10.1016/j.cej.2017.11.059

Song H, Yan L, Wang Y, Jiang J, Ma J, Li C, et al. Electrochemically activated PMS and PDS: Radical oxidation versus nonradical oxidation. Chem Eng J. 2020; 391: 123560. https://doi.org/10.1016/j.cej.2019.123560 DOI: https://doi.org/10.1016/j.cej.2019.123560

Wacławek S, Lutze HV, Sharma VK, Xiao R, Dionysiou DD. Revisit the alkaline activation of peroxydisulfate and peroxymonosulfate. Curr Opin Chem Eng. 2022; 37: 100854. https://doi.org/10.1016/j.coche.2022.100854 DOI: https://doi.org/10.1016/j.coche.2022.100854

Feng L, Liao X, Wu M, Yuan Y, Ai Z, Zhang L, et al. Enhanced removal of ammonia induced by the co-existing halogenated organics in wastewater via reutilization of spent lithium-ion batteries for peroxymonosulfate activation. Chem Eng J. 2023; 470: 144430. https://doi.org/10.1016/j.cej.2023.144430 DOI: https://doi.org/10.1016/j.cej.2023.144430

Scaggiante G, Checa-Fernandez A, Zingaretti D, Dominguez C M, Santos A, Baciocchi R. Activation of peroxydisulfate and peroxymonosulfate by zero-valent iron and FeCu bimetals for 4-chlorophenol oxidation in water. J Water Process Eng. 2024; 68: 106446. https://doi.org/10.1016/j.jwpe.2024.106446 DOI: https://doi.org/10.1016/j.jwpe.2024.106446

Sampe K, Katsumata H, Tateishi I, Furukawa M, Kaneco S. Activation of peroxymonosulfate by morphologically modified NiCo2O4 and application to diclofenac degradation. Next Mater. 2025; 8: 100597. https://doi.org/10.1016/j.nxmate.2025.100597 DOI: https://doi.org/10.1016/j.nxmate.2025.100597

Wu Z, Zou J, Li S, He L, Li Q, Zhou Z, et al. Strong enhancement on tetrabromobisphenol A removal in natural water matrix by adding cysteine into Cu(II)/peroxymonosulfate system over the wide pH range of 4–12: Efficiency and mechanism. Chem Eng J. 2024; 501: 157548. https://doi.org/10.1016/j.cej.2024.157548 DOI: https://doi.org/10.1016/j.cej.2024.157548

Geng L, Geng F, Cheng X, Yang M, Wang X, Zhang Y Z, et al. Triggering efficient redox cycling and electron transporting in CuCo spinel oxides via oxygen vacancy building for rapid degradation of antibiotics. Chem Eng J. 2024; 500: 156731. http://dx.doi.org/10.1016/J.CEJ.2024.156731 DOI: https://doi.org/10.1016/j.cej.2024.156731

Dai Y, Wang B, Zhang M, Li W, Wang L, Zou Y, et al. Thermal activation of peroxymonosulfate for enhanced volatile fatty acids production and phosphorus release during anaerobic fermentation of iron-rich sludge. Bioresour Technol. 2025; 432: 132653. https://doi.org/10.1016/j.biortech.2025.132653 DOI: https://doi.org/10.1016/j.biortech.2025.132653

Li N, Wu S, Dai H, Cheng Z, Peng W, Yan B, et al. Thermal activation of persulfates for organic wastewater purification: Heating modes, mechanism and influencing factors. Chem Eng J. 2022; 450: 137976. https://doi.org/10.1016/j.cej.2022.137976 DOI: https://doi.org/10.1016/j.cej.2022.137976

Ranaweera R, Wu X, Ng D, Reineck P, Zhang J, Williams M, et al. Comparative study of adsorption, thermally activated peroxymonosulfate and wet air oxidation for tetracycline removal and wastewater treatment. J Water Process Eng. 2025; 72: 107559. https://doi.org/10.1016/j.jwpe.2025.107559 DOI: https://doi.org/10.1016/j.jwpe.2025.107559

Wang L, Sun Z, Shi J, Li H, Fu T, Xu Y, et al. Selective oxidation of nitrogenous heterocyclic compounds by heat/peroxymonosulfate in phenol-rich wastewater. Water Res. 2025; 269: 122804. https://doi.org/10.1016/j.watres.2024.122804 DOI: https://doi.org/10.1016/j.watres.2024.122804

Liu P, Wu Z, Manzoli M, Cravotto G. Magnetic biochar generated from oil-mill wastewater by microwave-assisted hydrothermal treatment for sonocatalytic antibiotic degradation. J Environ Chem Eng. 2025; 13(1): 114996. https://doi.org/10.1016/j.jece.2024.114996 DOI: https://doi.org/10.1016/j.jece.2024.114996

Qu J, Liu R, Bi X, Li Z, Li K, Hu Q, et al. Remediation of atrazine contaminated soil by microwave activated persulfate system: Performance, mechanism and DFT calculation. J Cleaner Prod. 2023; 399: 136546. https://doi.org/10.1016/j.jclepro.2023.136546 DOI: https://doi.org/10.1016/j.jclepro.2023.136546

Sonawane S, Rayaroth M P, Landge V K, Fedorov K, Boczkaj G. Thermally activated persulfate-based Advanced Oxidation Processes — recent progress and challenges in mineralization of persistent organic chemicals: a review. Curr Opin Chem Eng. 2022; 37: 100839. https://doi.org/10.1016/j.coche.2022.100839 DOI: https://doi.org/10.1016/j.coche.2022.100839

Fan D, Hu M, Li S, Chen P, Jiang H, Tu X, et al. CNTs with nano-confined TiO2 and surface loading Co3O4: The analysis of its performance and mechanism of PMS activation for ECs degradation under visible light. Sep Purif Technol. 2025; 352: 127840. https://doi.org/10.1016/j.seppur.2024.127840 DOI: https://doi.org/10.1016/j.seppur.2024.127840

Wang H, Long Z, Chen R, Zhang H, Shi H, Chen Y. Boosting PMS activation over BiVO4 piezo-photocatalyst to rapidly degrade tetracycline: Intermediates and mechanism. Sep Purif Technol. 2024; 331: 125598. https://doi.org/10.1016/j.seppur.2023.125598 DOI: https://doi.org/10.1016/j.seppur.2023.125598

Hou C, Kang Y, Wang D, Xuan Y, Wang H, Li J, et al. Vis-light-driven activation of persulfate by Bi2MoxW1-xO6: Elucidating the electronic mechanism for enhanced photocatalytic activity. J Alloys Compd. 2025; 1021: 179675. https://doi.org/10.1016/j.jallcom.2025.179675 DOI: https://doi.org/10.1016/j.jallcom.2025.179675

Chen H, Yin R, Zhu M. How to enhance persulfate processes by external-field effects: From fundamentals to applications. Water Res. 2025; 274: 123026. https://doi.org/10.1016/j.watres.2024.123026 DOI: https://doi.org/10.1016/j.watres.2024.123026

Alayande A B, Hong S. Ultraviolet light-activated peroxymonosulfate (UV/PMS) system for humic acid mineralization: Effects of ionic matrix and feasible application in seawater reverse osmosis desalination. Environ Pollut. 2022; 307: 119513. https://doi.org/10.1016/j.envpol.2022.119513 DOI: https://doi.org/10.1016/j.envpol.2022.119513

Shen L, Wang H, Kang J, Shen J, Yan P, Gong Y, et al. Simultaneous elimination of N,N-dimethylhydrazine compounds and its oxidation by-product N-nitrosodimethylamine by UV-activated peroxymonosulfate process: Multiple-path mechanism validation and toxicity alteration. Chem Eng J. 2023; 474: 145837. https://doi.org/10.1016/j.cej.2023.145837 DOI: https://doi.org/10.1016/j.cej.2023.145837

Yu J, Deng W, Huang X, Zhao M, Li X, Zhang T, et al. Intramolecular generation of endogenous Cu(III) for selectively self-catalytic degradation of Cu(II)-EDTA from wastewater by UV/peroxymonosulfate. J Hazard Mater. 2024; 465: 133521. https://doi.org/10.1016/j.jhazmat.2024.133521 DOI: https://doi.org/10.1016/j.jhazmat.2024.133521

Zhang L, Ju L, Li X, Guli A, Lyu C. CoOOH with a highly negative CB band for visible-light-driven photocatalytic degradation of refractory organic pollutants in peroxymonosulfate system: Enhanced performance and multi-path synergetic mechanisms. J Hazard Mater. 2023; 460: 132403. https://doi.org/10.1016/j.jhazmat.2023.132403 DOI: https://doi.org/10.1016/j.jhazmat.2023.132403

Tang C, Wang C-C, Yi X-H, Chang M, Wang F, Li Y, et al. The enhanced photocatalytic peroxymonosulfate activation for 2, 4-dichlorophenoxyacetic acid degradation over Z-scheme PTCDA/MIL-88A(Fe) under visible light. Chem Eng J. 2024; 493: 152668. https://doi.org/10.1016/j.cej.2024.152668 DOI: https://doi.org/10.1016/j.cej.2024.152668

Liu Q, Cui K, Cui M, Liu X, Zhang Q. Co-modification of carbon and cyano defect in g-C3N4 for enhanced photocatalytic peroxymonosulfate activation: Combined experimental and theoretical analysis. Sep Purif Technol. 2023; 316: 123844. https://doi.org/10.1016/j.seppur.2023.123844 DOI: https://doi.org/10.1016/j.seppur.2023.123844

Zhang L, Wang B, Yang W, Ju L, Fu Z, Zhao L, et al. CoOOH@COFs S−scheme heterojunction for efficient triclosan degradation in photocatalytic-peroxymonosulfate activation system: Enhanced interfacial electron transfer mechanism. Chin Chem Lett. 2025; (in press). https://doi.org/10.1016/j.cclet.2025.111142 DOI: https://doi.org/10.1016/j.cclet.2025.111142

Jiang L, Xie S, Chen H, Yang J, Wang X, Li W, et al. Visible-light-promoted peroxymonosulfate activation for ACE degradation: Overlooked role of photogenerated hole. Appl Catal, B. 2025; 365: 124881. https://doi.org/10.1016/j.apcatb.2024.124881 DOI: https://doi.org/10.1016/j.apcatb.2024.124881

Deng Y, Liu J, Wu X, Zhou T, Huang M. Engineering Cu2O@BN photocatalytic heterojunction for synchronous kinetic enhancement and reaction pathway regulation in peroxymonosulfate activation. J Environ Manage. 2025; 379: 124892. https://doi.org/10.1016/j.jenvman.2025.124892 DOI: https://doi.org/10.1016/j.jenvman.2025.124892

Yang Y, Meng W, Wang Y, Wang X, Wang J, Sun S-P, et al. Constructing 2D highly crystalline g-C3N4 supported 1D iron oxides in molten salts for enhanced photocatalytic peroxymonosulfate activation. Sep Purif Technol. 2025; 358: 130284. https://doi.org/10.1016/j.seppur.2024.130284 DOI: https://doi.org/10.1016/j.seppur.2024.130284

Xu K, Cui K, Cui M, Liu X, Chen X, Tang X, et al. Electronic structure modulation of g-C3N4 by Hydroxyl-grafting for enhanced photocatalytic peroxymonosulfate Activation: Combined experimental and theoretical analysis. Sep Purif Technol. 2022; 294: 121246. https://doi.org/10.1016/j.seppur.2022.121246 DOI: https://doi.org/10.1016/j.seppur.2022.121246

Bui T K, Nguyen T L, Van Pham V. Review of g-C3N4-based photocatalysts for Amoxicillin photocatalytic degradation. J Water Process Eng. 2024; 67: 106257. https://doi.org/10.1016/j.jwpe.2024.106257 DOI: https://doi.org/10.1016/j.jwpe.2024.106257

Bhattacharjee B, Mishra S R, Gadore V, Ahmaruzzaman M. Carbon-based Composites for Environmental Clean-up: Advances in Biochar, g-C3N4, Graphene Oxide and CNTs. J Taiwan Inst Chem Eng. 2025; 168: 105918. https://doi.org/10.1016/j.jtice.2024.105918 DOI: https://doi.org/10.1016/j.jtice.2024.105918

Liu Q, Cui K, Cui M, Sun S, Li H. Sulfur and chloride co-doped g-C3N4 in photocatalytic peroxymonosulfate activation for enhanced acetaminophen removal: Combination of experiments and DFT calculations. J Environ Chem Eng. 2024; 12(3): 112857. https://doi.org/10.1016/j.jece.2024.112857 DOI: https://doi.org/10.1016/j.jece.2024.112857

Wu Z, Fan Z, Song P. Efficient degradation of Cu-Norfloxacin complexes in wastewater by electro-activated peroxymonosulfate coupled with electrocoagulation. J Water Process Eng. 2025; 70: 107140. https://doi.org/10.1016/j.jwpe.2025.107140 DOI: https://doi.org/10.1016/j.jwpe.2025.107140

Liu Y, Li Y, Li C, Asuna, Wang Z, Li F, et al. Electrochemically-induced metal–oxygen bond Cu(II)-SO5− on novel CuBi2O4 anode for efficient peroxymonosulfate activation. Chem Eng J. 2024; 495: 153378. https://doi.org/10.1016/j.cej.2024.153378 DOI: https://doi.org/10.1016/j.cej.2024.153378

Gao D, Wang H, Lu Q, Ye C, Cai J, Wang L. Enhanced PMS activation efficiency and SMX degradation performance via Fe(II)/Fe(III) cycling with efficient CCF@MoS2@GA-Fe catalyst. Environ Res. 2025; 274: 121299. https://doi.org/10.1016/j.envres.2025.121299 DOI: https://doi.org/10.1016/j.envres.2025.121299

Zhang L, Li Z. Effect of dissolved oxygen on the peroxymonosulfate activation pathway in an electrochemical Co/P/CA cathode system. Chemosphere. 2024; 364: 143107. https://doi.org/10.1016/j.chemosphere.2024.143107 DOI: https://doi.org/10.1016/j.chemosphere.2024.143107

Cai C, Jiang T, Peng H, Fu X, Nie C, Ao Z. Sustainable peroxymonosulfate activation by 1T/2H-MoS2 cathode for enhanced removal of organic pollutants: Performance and nonradical activation mechanism based on surface Mo-peroxymonosulfate complexes. Chem Eng J. 2025; 518(15): 164474. https://doi.org/10.1016/j.cej.2025.164474 DOI: https://doi.org/10.1016/j.cej.2025.164474

Zhang L, Tao Y. Ecological regime shifts enhanced the contribution of microplastics to the burial of polycyclic aromatic hydrocarbons by sediments. Environ Pollut. 2023; 335: 122329. https://doi.org/10.1016/j.envpol.2023.122329 DOI: https://doi.org/10.1016/j.envpol.2023.122329

Ma J, Lu J, Liu Y, Fan Z. Industrial potential of electro-oxidation and peroxymonosulfate coupling for efficient organic degradation in acidic dye wastewater. Process Saf Environ Protect. 2025; 194: 1572-1583. https://doi.org/10.1016/j.psep.2024.12.106 DOI: https://doi.org/10.1016/j.psep.2024.12.106

Yu F, Guo Y, li H, Yang J. Activated persulfate by the synergistic electro-activation and bimetals cathode (MBC@CF) leads to highly efficient degradation of tetracycline. Sep Purif Technol. 2024; 335: 126204. https://doi.org/10.1016/j.seppur.2023.126204 DOI: https://doi.org/10.1016/j.seppur.2023.126204

Wan H, Jin R, Tian Z, Qiu X, Zhai S, Niu J, et al. Electro-activation of peroxymonosulfate by novel Co3O4/sludge biochar cathode for sulfamethoxazole removal: cobalt-mediated synergistic effect and mechanism. Environ Res. 2025; 279: 121742. https://doi.org/10.1016/j.envres.2025.121742 DOI: https://doi.org/10.1016/j.envres.2025.121742

Zhao Y, Wang H, Ji J, Li X, Yuan X, Duan A, et al. Recycling of waste power lithium-ion batteries to prepare nickel/cobalt/manganese-containing catalysts with inter-valence cobalt/manganese synergistic effect for peroxymonosulfate activation. J Colloid Interface Sci. 2022; 626: 564-580. https://doi.org/10.1016/j.jcis.2022.06.112 DOI: https://doi.org/10.1016/j.jcis.2022.06.112

Gong M, Ren X, Chen J, Mo R, Yang S. Preparing of multi-metal spinel oxides for PMS activation from spent lithium-ion batteries: A non-closed-loop process. J Environ Chem Eng. 2025; 13(1): 115076. https://doi.org/10.1016/j.jece.2024.115076 DOI: https://doi.org/10.1016/j.jece.2024.115076

Hu Z, Su G, Long S, Zhang X, Zhang L, Chen Y, et al. Synthesis of X@DRHC (X=Co, Ni, Mn) catalyst from comprehensive utilization of waste rice husk and spent lithium-ion batteries for efficient peroxymonosulfate (PMS) activation. Environ Res. 2024; 245: 118078. https://doi.org/10.1016/j.envres.2023.118078 DOI: https://doi.org/10.1016/j.envres.2023.118078

Liu L, Zhu J, Liu Q, Wu Z. Mechanistic insights and performance evaluation of plasma-activated persulfate systems for the degradation of organic pollutants. Environ Res. 2025; 282: 122081. https://doi.org/10.1016/j.envres.2025.122081 DOI: https://doi.org/10.1016/j.envres.2025.122081

Duan Y, Dong B, Zhi X, Li Z, Wang P, Tan Y, et al. Degradation performance and mechanism of plasma-activated persulfate for environmental persistent pollutants. Chin J Chem Eng. 2025; 80: 155-65. https://doi.org/10.1016/j.cjche.2024.10.031 DOI: https://doi.org/10.1016/j.cjche.2024.10.031

Zhao X, Liu S, Tong Y, Sun L, Han Q, Feng L, et al. Comparative study on the activation of peroxymonosulfate and peroxydisulfate by Ar plasma-etching CNTs for sulfamethoxazole degradation: Efficiency and mechanisms. Chemosphere. 2024; 359: 142287. https://doi.org/10.1016/j.chemosphere.2024.142287 DOI: https://doi.org/10.1016/j.chemosphere.2024.142287

Guo H, Pan S, Hu Z, Wang Y, Jiang W, Yang Y, et al. Persulfate activated by non-thermal plasma for organic pollutants degradation: A review. Chem Eng J. 2023; 470: 144094. https://doi.org/10.1016/j.cej.2023.144094 DOI: https://doi.org/10.1016/j.cej.2023.144094

Sang W, Bao H, Pang L, Cheng K, Li M, Zou L. Degradation of chlortetracycline in sludge by dielectric barrier discharge plasma coupled with peroxymonosulfate: Performance and mechanism. J Water Process Eng. 2024; 67: 106273. https://doi.org/10.1016/j.jwpe.2024.106273 DOI: https://doi.org/10.1016/j.jwpe.2024.106273

Hosseini R, Fattah-alhosseini A, Karbasi M, Giannakis S. Tailoring surface defects in Plasma Electrolytic Oxidation (PEO) treated 2-D black TiO2: Post-treatment role, and intensification by peroxymonosulfate activation in visible light-driven photocatalysis. Appl Catal, B. 2024; 340: 123197. https://doi.org/10.1016/j.apcatb.2023.123197 DOI: https://doi.org/10.1016/j.apcatb.2023.123197

Liu S, Yin S, Zhang Z, Feng L, Liu Y, Zhang L. Regulation of defects and nitrogen species on carbon nanotube by plasma-etching for peroxymonosulfate activation: Inducing non-radical/radical oxidation of organic contaminants. J Hazard Mater. 2023; 441: 129905. https://doi.org/10.1016/j.jhazmat.2022.129905 DOI: https://doi.org/10.1016/j.jhazmat.2022.129905

Liu S, Zhang Z, Lu R, Mao Y, Ge H, Liu C, et al. O2 plasma-modified carbon nanotube for sulfamethoxazole degradation via peroxymonosulfate activation: Synergism of radical and non-radical pathways boosting water decontamination and detoxification. Chemosphere. 2023; 344: 140214. https://doi.org/10.1016/j.chemosphere.2023.140214 DOI: https://doi.org/10.1016/j.chemosphere.2023.140214

Sun C, Wang H, Jiang T, Zhao X, Yao M, Wang X, et al. Surface defect and carbonyl engineering of CNTs via oxygen-plasma etching: Oriented production of singlet oxygen from peroxymonosulfate activation. Sep Purif Technol. 2024; 337: 126454. https://doi.org/10.1016/j.seppur.2024.126454 DOI: https://doi.org/10.1016/j.seppur.2024.126454

Chen Y, Sun X, Zheng L, Liu Y, Zhao Y, Huang S, et al. Synergistic catalysis induced by a multi-component system constructed by DBD plasma combined with α-Fe2O3/FeVO4/HCP and peroxymonosulfate for gatifloxacin removal. Chemosphere. 2023; 332: 138838. https://doi.org/10.1016/j.chemosphere.2023.138838 DOI: https://doi.org/10.1016/j.chemosphere.2023.138838

Lou J, Wang X, An J. Dielectric barrier discharge plasma in-situ microbubble aeration with peroxymonosulfate for levofloxacin degradation: Microbubble superior performance and pH-dependent mechanism. Sep Purif Technol. 2025; 355: 129626. https://doi.org/10.1016/j.seppur.2024.129626 DOI: https://doi.org/10.1016/j.seppur.2024.129626

Jia M, Pei X, Cheng J, Tian D, Yang J, Sang L, et al. An excellent defluorination rate of PFOA achieved by a DBD-peroxymonosulfate system. J Water Process Eng. 2025; 76: 108215. https://doi.org/10.1016/j.jwpe.2025.108215 DOI: https://doi.org/10.1016/j.jwpe.2025.108215

Lou J, Lu G, Wei Y, Zhang Y, An J, Jia M, et al. Enhanced degradation of residual potassium ethyl xanthate in mineral separation wastewater by dielectric barrier discharge plasma and peroxymonosulfate. Sep Purif Technol. 2022; 282: 119955. https://doi.org/10.1016/j.seppur.2021.119955 DOI: https://doi.org/10.1016/j.seppur.2021.119955

You C-S, Jung S-C. Decomposition of the antibiotic sulfamethoxazole by the liquid-phase plasma process enhanced by peroxymonosulfate. J Ind Eng Chem. 2024; 131: 422-31. https://doi.org/10.1016/j.jiec.2023.10.045 DOI: https://doi.org/10.1016/j.jiec.2023.10.045

Liu S, Kang Y. Synergistic oxidation induced by underwater bubbling plasma and diatomite-CoFe2O4 activated peroxymonosulfate for the degradation of ciprofloxacin hydrochloride. Environ Pollut. 2024; 348: 123891. https://doi.org/10.1016/j.envpol.2024.123891 DOI: https://doi.org/10.1016/j.envpol.2024.123891

Hua W, Kang Y, Liu S. Synergistic removal of aqueous ciprofloxacin hydrochloride by water surface plasma coupled with peroxymonosulfate activation. Sep Purif Technol. 2022; 303: 122301. https://doi.org/10.1016/j.seppur.2022.122301 DOI: https://doi.org/10.1016/j.seppur.2022.122301

Hongchao L, Zihao Z, Jieshu Q, Bingcai P. Are Free Radicals the Primary Reactive Species in Co(II)-Mediated Activation of Peroxymonosulfate? New Evidence for the Role of the Co(II)-Peroxymonosulfate Complex. Environ Sci Technol. 2021; 55(9): 6397-6406. http://dx.doi.org/10.1021/ACS.EST.1C02015 DOI: https://doi.org/10.1021/acs.est.1c02015

Hongyu D, Qinghua X, Lushi L, Yang L, Shuchang W, Cong L, et al. Degradation of Organic Contaminants in the Fe(II)/Peroxymonosulfate Process under Acidic Conditions: The Overlooked Rapid Oxidation Stage. Environ Sci Technol. 2021; 55(22): 15390-9. http://dx.doi.org/10.1021/ACS.EST.1C04563 DOI: https://doi.org/10.1021/acs.est.1c04563

Yang B, Ma Q, Hao J, Sun X. Peroxymonosulfate Activation by Palladium(II) for Pollutants Degradation: A Study on Reaction Mechanism and Molecular Structural Characteristics. Int J Environ Res Public Health. 2022; 19(20): 13036. http://dx.doi.org/10.3390/IJERPH192013036 DOI: https://doi.org/10.3390/ijerph192013036

Li J, Ni Z, Gao Q, Yang X, Fang Y, Qiu R, et al. Core-shell structured cobalt–nickel bimetallic sulfide with dual redox cycles to activate peroxymonosulfate for glyphosate removal. Chem Eng J. 2023; 453: 139972. https://doi.org/10.1016/j.cej.2022.139972 DOI: https://doi.org/10.1016/j.cej.2022.139972

Wang X, Xia L, Cheng H, Li K, Feng W, Dai X, et al. Ultrasound-mediated Cu2+/Cu+ redox cycling activates peroxymonosulfate for oxygen-independent reactive X species (X = O/S) therapy. Nano Today. 2024; 55: 102180. https://doi.org/10.1016/j.nantod.2024.102180 DOI: https://doi.org/10.1016/j.nantod.2024.102180

Pan M, Hamid Y, Czech B, He Z, Yang X. Hyperaccumulator biochar prepared via hydrothermal pretreatment for azo dye degradation: Peroxymonosulfate activation and life cycle assessment. J Environ Chem Eng. 2025; 13(3): 116796. https://doi.org/10.1016/j.jece.2025.116796 DOI: https://doi.org/10.1016/j.jece.2025.116796

Bu Z, Hou M, Li Z, Dong Z, Zeng L, Zhang P, et al. Fe3+/Fe2+ cycle promoted peroxymonosulfate activation with addition of boron for sulfamethazine degradation: Efficiency and the role of boron. Sep Purif Technol. 2022; 298: 121596. https://doi.org/10.1016/j.seppur.2022.121596 DOI: https://doi.org/10.1016/j.seppur.2022.121596

Li G, Cheng Y, Chen Y, Liu Z, Ma J, Xie P. Accelerated vanadium (IV)/(V) redox cycle and hydroxyl radical generation by hydroxylamine in peroxymonosulfate activation: from synthetic vanadium oxides to natural minerals. Chem Eng J. 2025; 518: 164821. https://doi.org/10.1016/j.cej.2025.164821 DOI: https://doi.org/10.1016/j.cej.2025.164821

Liu H, An L, Gao Z, Duan Z, Luo B, Sun Y, et al. The removal of antibiotic resistance bacteria and genes and inhibition of RP4 plasmid-mediated conjugative transfer by citric acid chelated Fe(II) catalyzing peroxymonosulfate systems: Performance and mechanisms. Chem Eng J. 2024; 499: 156297. https://doi.org/10.1016/j.cej.2024.156297 DOI: https://doi.org/10.1016/j.cej.2024.156297

Ma MD, Zhao YC, Zhu L, Wang WP, Kang YL, An LH. Research Progress on Characteristics of Human Microplastic Pollution and Health Risks. Environ Sci. 2024; 45(1): 459-69. 10.13227/J.HJKX.202212185

Liu H, Zhao J, Wang Y, Wu Y, Dong W, Nie M, et al. Enhancement of peroxymonosulfate activation by sinapic acid accelerating Fe(III)/Fe(II) cycle. Chem Eng J. 2022; 446: 137177. https://doi.org/10.1016/j.cej.2022.137177 DOI: https://doi.org/10.1016/j.cej.2022.137177

Wang S, Xia J, Zha Y, Zhu J, Wang Y, Huang R, et al. Ceramic catalytic membrane with low metal ion leaching for bisphenol A removal via peroxymonosulfate activation. Chem Eng Sci. 2025; 301: 120698. https://doi.org/10.1016/j.ces.2024.120698 DOI: https://doi.org/10.1016/j.ces.2024.120698

Gao S, Han X, Zhang Y, Zhang L, Tian Z, Xiong Y, et al. Mn/Ce nanoparticles doped carbon nanotubes with enhanced redox cycles for efficient and stable peroxymonosulfate activation. Appl Surf Sci. 2025; 706: 163549. https://doi.org/10.1016/j.apsusc.2025.163549 DOI: https://doi.org/10.1016/j.apsusc.2025.163549

Sui C, Nie Z, Liu H, Boczkaj G, Liu W, Kong L, et al. Singlet oxygen-dominated peroxymonosulfate activation by layered crednerite for organic pollutants degradation in high salinity wastewater. J Environ Sci. 2024; 135: 86-96. https://doi.org/10.1016/j.jes.2023.01.010 DOI: https://doi.org/10.1016/j.jes.2023.01.010

Shen Y, Martín de Vidales M J, Gorni G, Sampaio M J, Silva A M T, Lado Ribeiro A R, et al. Composition-dependent PMS activation in SrxLa2-xCoO4±δ perovskite-derivatives: From radical to strengthen the electron-transfer pathway. Appl Catal, B. 2024; 357: 124291. https://doi.org/10.1016/j.apcatb.2024.124291 DOI: https://doi.org/10.1016/j.apcatb.2024.124291

Wang Q, Yu W, Xu W, Li Z, Xia X, Xu Y. Trace copper doped LaMnO3 perovskite for PMS activation via electron transfer process towards pollutant elimination. J Water Process Eng. 2025; 72: 107486. https://doi.org/10.1016/j.jwpe.2025.107486 DOI: https://doi.org/10.1016/j.jwpe.2025.107486

Zhang X, Zhang W, Li J, Wang T, Miao H, Fan Q, et al. Nanosized Co-Fe spinel quantum dots anchored on activated carbon for enhanced VOCs mineralization via PMS-based AOPs coupled with wet scrubber. Sep Purif Technol. 2024; 328: 125135. https://doi.org/10.1016/j.seppur.2023.125135 DOI: https://doi.org/10.1016/j.seppur.2023.125135

Han X, Li G, Su W, Xu X, Yu M, Wu G, et al. Cu-based composite materials derived from MOFs for visible light PMS activation in tetracycline removal. Colloids Surf, A. 2024; 702: 135147. https://doi.org/10.1016/j.colsurfa.2024.135147 DOI: https://doi.org/10.1016/j.colsurfa.2024.135147

Hong Y, Huang Z, Xu J, Xue Y, Feng H, Zhang T, et al. Surging efficient PMS activation through a COF-MOF dual immobilized catalytic platform: Synergy of enhanced electron transfer and adsorption-PMS activation. Sep Purif Technol. 2024; 345: 127376. https://doi.org/10.1016/j.seppur.2024.127376 DOI: https://doi.org/10.1016/j.seppur.2024.127376

Pan J, Wang Z, Luo J, Fan L, Li X, Wang C, et al. Uncovering the high-activity origin of sulfur doping in Co3O4 for organic pollutant degradation via peroxymonosulfate activation. Chem Eng J. 2025; 515: 163760. https://doi.org/10.1016/j.cej.2025.163760 DOI: https://doi.org/10.1016/j.cej.2025.163760

Yang Z, Zheng G, Wang X, Wen K, Chen X, Zhang J. Ferroelectric Bi2Fe4O9 for efficient peroxymonosulfate activation: The overlooked role of spontaneous polarization. Sep Purif Technol. 2025; 374: 133787. https://doi.org/10.1016/j.seppur.2025.133787 DOI: https://doi.org/10.1016/j.seppur.2025.133787

Bian H, OuYang Z, Zhang X, Wang J. Efficient activation of peroxymonosulfate by CoCuAl-LDH nanosheets for the degradation of RhB. J Solid State Chem. 2025; 349: 125414. https://doi.org/10.1016/j.jssc.2025.125414 DOI: https://doi.org/10.1016/j.jssc.2025.125414

Wang Z, Gao L, Chen X, Jin H, Wei H, Ma L, et al. Hollow layered double hydroxide nanoreactor activated peroxymonosulfate to efficiently degrade dye wastewater. J Colloid Interface Sci. 2025; 689: 137205. https://doi.org/10.1016/j.jcis.2025.02.213 DOI: https://doi.org/10.1016/j.jcis.2025.02.213

Li T, Sun W, Zhang J, Liu S, Chen H, Qiu Z, et al. Co3O4 confined in activated carbon-supported Mg/Al-LDH for µM peroxymonosulfate activation with minute-level antibiotics degradation. Chem Eng J. 2025; 516: 163872. https://doi.org/10.1016/j.cej.2025.163872 DOI: https://doi.org/10.1016/j.cej.2025.163872

Li W, Kong L, Wang Z, Han Z, Zhang B, Shi M, et al. Electronic structure reconstruction of Fe-Mn diatomic pair for disentangling activity-stability tradeoff in Fenton-like reactions. Appl Catal, B. 2025; 365: 124920. https://doi.org/10.1016/j.apcatb.2024.124920 DOI: https://doi.org/10.1016/j.apcatb.2024.124920

Li H, Li N, Xu C, Huang J, Du J, Li F, et al. Highly efficient activation of peroxymonosulfate by MOF derived CoS2@C for degradation of ciprofloxacin. Sep Purif Technol. 2025; 352: 128275. https://doi.org/10.1016/j.seppur.2024.128275 DOI: https://doi.org/10.1016/j.seppur.2024.128275

Liu Y, Liu H, Li Z, Qin H, Di S, Chen P, et al. N-doped CuFe-MOF-919 derivatives in activation of peroxymonosulfate for enhanced degradation of organic pollutants: 1O2 dominated non-radical pathway. Sep Purif Technol. 2024; 345: 127324. https://doi.org/10.1016/j.seppur.2024.127324 DOI: https://doi.org/10.1016/j.seppur.2024.127324

Wang H, Dai Y, Wang Y, Yin L. One-pot solvothermal synthesis of Cu–Fe-MOF for efficiently activating peroxymonosulfate to degrade organic pollutants in water:Effect of electron shuttle. Chemosphere. 2024; 352: 141333. https://doi.org/10.1016/j.chemosphere.2024.141333 DOI: https://doi.org/10.1016/j.chemosphere.2024.141333

Peng X, Li J, Liu S, Zeng P, Shan M. Bimetallic FeCo-MOF as peroxymonosulfate activator for efficient degradation of sulfamethoxazole: Performance and mechanism. Mol Catal. 2025; 572: 114751. https://doi.org/10.1016/j.mcat.2024.114751 DOI: https://doi.org/10.1016/j.mcat.2024.114751

Guo S, Li J, Wang Y, Sun D, Ma H, Hao J, et al. Polydopamine-modified bimetallic metal organic frameworks (MOFs) for peroxymonosulfate activation to efficient degradation of tetracycline hydrochloride in wastewater. Colloids Surf, A. 2024; 689: 133721. https://doi.org/10.1016/j.colsurfa.2024.133721 DOI: https://doi.org/10.1016/j.colsurfa.2024.133721

Wang H, Zang J, Zhang Y, Zhang J, Pu Y, Long Y, et al. Cobalt boride derived from metal-organic framework as highly efficient catalyst for tetracycline degradation with peroxymonosulfate activation. J Environ Chem Eng. 2025; 13: 117580. https://doi.org/10.1016/j.jece.2025.117580 DOI: https://doi.org/10.1016/j.jece.2025.117580

Zhang C, Chen L, Luo H, Weng H, Qin F, Qin D, et al. Selective micropollutants removal in wastewaters by non-radical activation of peroxymonosulfate: Multiparameter analysis of electron-donating capacity. Appl Catal, B. 2025; 362: 124695. https://doi.org/10.1016/j.apcatb.2024.124695 DOI: https://doi.org/10.1016/j.apcatb.2024.124695

Yang Y, Yang B, Gao X, Dang X, Jin Z, Zhang X. MOF-on-MOF composite material derived from ZIF-67 precursor activated by peroxymonosulfate for the removal of metronidazole. J Water Process Eng. 2025; 72: 107467. https://doi.org/10.1016/j.jwpe.2025.107467 DOI: https://doi.org/10.1016/j.jwpe.2025.107467

Li X, Fu X, Wu J, Fu X, Huang J, Chen Y. MOF derived bimetallic-nanoreactor as peroxymonosulfate activator for highly efficient levofloxacin degradation: Performance and mechanism. Chem Eng J. 2025; 515: 163948. https://doi.org/10.1016/j.cej.2025.163948 DOI: https://doi.org/10.1016/j.cej.2025.163948

Di L, Wang T, Lu Q, Lu J, Zhang Y, Zhou Y, et al. Efficient PMS activation toward degradation of bisphenol A by metal-free nitrogen-doped hollow carbon spheres. Sep Purif Technol. 2024; 339: 126740. https://doi.org/10.1016/j.seppur.2024.126740 DOI: https://doi.org/10.1016/j.seppur.2024.126740

Gao Y, Zhao H, Liu M, Wang Y, Zhang Y, Zhai L, et al. Construction of photothermal hybrid with surface-polarized carbon nanotube twined oxygen-vacancy engineered cuprous oxide for improved PMS activation and water purification. Mol Catal. 2025; 578: 114994. https://doi.org/10.1016/j.mcat.2025.114994 DOI: https://doi.org/10.1016/j.mcat.2025.114994

Tao F, Chen H, Wang H, Huang H, Dong A, Zheng M, et al. Efficient degradation of organic pollutants using carbon coil aerogels from waste tea as peroxymonosulfate activators. J Water Process Eng. 2025; 70: 107064. https://doi.org/10.1016/j.jwpe.2025.107064 DOI: https://doi.org/10.1016/j.jwpe.2025.107064

Su B, Zhang W, Sun F, Quan X. Hybrid peroxymonosulfate/activated carbon fiber-sequencing batch reactor system for efficient treatment of coking wastewater: Establishment and influential factors. Bioresour Technol. 2024; 405: 130907. https://doi.org/10.1016/j.biortech.2024.130907 DOI: https://doi.org/10.1016/j.biortech.2024.130907

Huang X, Liu C, Zhang Z, Vasanthakumar V, Ai H, Xu L, et al. Stable Cu-Co/C carbon-based composites for efficiency catalytic degradation of Orange II by PMS: Effect factors, application potential analysis, and mechanism. J Ind Eng Chem. 2023; 126: 307-16. https://doi.org/10.1016/j.jiec.2023.06.021 DOI: https://doi.org/10.1016/j.jiec.2023.06.021

Li M, Zhang W, Lin L, Gong Z, Li B, Sun F, et al. Facet regulation of nanocrystal cobalt@nitrogen-carbon catalyst for boosting PMS activation towards carbamazepine degradation. Sep Purif Technol. 2025; 363: 132169. https://doi.org/10.1016/j.seppur.2025.132169 DOI: https://doi.org/10.1016/j.seppur.2025.132169

Li F, Yuan C, Niu Y, Sheng J, Wang X, Shi Y, et al. Cobalt/iron bimetallic oxide coated with graphitized nitrogen-doped carbon (Fe2O3-CoO@NC) derived from cobalt/iron solid complex as peroxymonosulfate (PMS) activator for efficient bensulfuron-methyl degradation. Environ Res. 2024; 263: 120249. https://doi.org/10.1016/j.envres.2024.120249 DOI: https://doi.org/10.1016/j.envres.2024.120249

Yang J, Zhao H, Qiu S, Xiong F, Fu B, Zhang F, et al. Oxidative degradation of anionic dyes in wastewater by magnetic lignin micro-nano spheres catalyzed peroxymonosulfate. Int J Biol Macromol. 2024; 282: 137390. https://doi.org/10.1016/j.ijbiomac.2024.137390 DOI: https://doi.org/10.1016/j.ijbiomac.2024.137390

Yu C, Gu L, Wu Z, Chen K, Wu Y, Zhang L, et al. N-coordinated iron sites dispersed in porous carbon frameworks to activate peroxymonosulfate for efficient sulfisoxazole degradation and real hospital wastewater decontamination. J Hazard Mater. 2024; 480: 136149. https://doi.org/10.1016/j.jhazmat.2024.136149 DOI: https://doi.org/10.1016/j.jhazmat.2024.136149

Yuexing W, Bin F, Junmei G, Jiansheng Z, Yuhong Q, Chong H, et al. Co3O4 coated carbon fiber activates PMS to degrade phenolic pollutants via 1O2 dominated non-radical pathway: Role of dual reaction center. J Environ Chem Eng. 2024; 12(5): 113921. https://doi.org/10.1016/j.jece.2024.113921 DOI: https://doi.org/10.1016/j.jece.2024.113921

Guo X, Yang N, Qi J, Li X, Guo D. Dopping-elements electronegativity-guided electronic modulation of N, P doped carbon coated CoFeP: Dual-functional contaminant degradation via electrooxidation and PMS (Peroxymonosulfate) activation. Sep Purif Technol. 2025; 373: 133544. https://doi.org/10.1016/j.seppur.2025.133544 DOI: https://doi.org/10.1016/j.seppur.2025.133544

Liu S, Wang B, Huang Y, Xu X, Kan Y, Shang Y. Comparison between endogenous and exogenous nitrogen of nitrogen-doped carbon catalyst in the process of activating PMS. J Taiwan Inst Chem Eng. 2024; 165: 105793. https://doi.org/10.1016/j.jtice.2024.105793 DOI: https://doi.org/10.1016/j.jtice.2024.105793

Chen X, Wang D, Tan K, Dong L. In situ self-assembly green synthesis of P-doped tubular carbon nitride for photocatalytic activation of PMS to rapidly degrade organic pollutants. J Environ Sci. 2025 (in press). https://doi.org/10.1016/j.jes.2025.04.019 DOI: https://doi.org/10.1016/j.jes.2025.04.019

Zhi K, Liu D, Xu J, Li Z, Li S, Luo L, et al. N-doped graphene loaded with Ru sites as PMS activators for SMX degradation via non-radical pathway: efficiency, selectivity and mechanism. Chem Eng J. 2025; 512: 162230. https://doi.org/10.1016/j.cej.2025.162230 DOI: https://doi.org/10.1016/j.cej.2025.162230

Hou L, Zang J, Liu S, You P, Fan G. Nitrogen-mediated engineering cobalt phosphide sites for enhanced peroxymonosulfate activation towards organic wastewater purification. Environ Res. 2025; 277: 121551. https://doi.org/10.1016/j.envres.2025.121551 DOI: https://doi.org/10.1016/j.envres.2025.121551

Andoh C N, Attiogbe F, Bonsu Ackerson N O, Antwi M, Adu-Boahen K. Fourier Transform Infrared Spectroscopy: An analytical technique for microplastic identification and quantification. Infrared Phys Technol. 2024; 136: 105070. 10.1016/j.infrared.2023.105070 DOI: https://doi.org/10.1016/j.infrared.2023.105070

Le V-A, Nguyen H T, Wang Y-F, You S-J. Effective integration of peroxymonosulfate activation and photocatalysis by MnO2@CeO2 catalyst for enhanced membrane antifouling performance. Sep Purif Technol. 2025; 376: 133877. https://doi.org/10.1016/j.seppur.2025.133877 DOI: https://doi.org/10.1016/j.seppur.2025.133877

Pan B, Chen W, Zhou L, Lai X, Qin J, Wang C. CoFe2O4/carbon nitride Z-scheme heterojunction photocatalytic PMS activation for efficient tetracycline degradation: Accelerated electron transfer. Process Saf Environ Protect. 2024; 191: 2522-32. https://doi.org/10.1016/j.psep.2024.09.120 DOI: https://doi.org/10.1016/j.psep.2024.09.120

Zhou M, Huang X, Zhang Y, Zhou N, Deng J, Zeng Y, et al. Synergistic combination of Mn/Fe bimetal-doped carbon nitride and peroxymonosulfate for efficient photocatalytic degradation of antibiotics. J Environ Chem Eng. 2024; 12(5): 113730. https://doi.org/10.1016/j.jece.2024.113730 DOI: https://doi.org/10.1016/j.jece.2024.113730

Wei LW, Liu SH, Nguyen VC, Zheng MW, Wang HP. Visible-light driven O2-to-H2O2 synchronized activation of peroxymonosulfate in Z-scheme photocatalytic fuel cell for wastewater purification with power generation. Appl Catal, B. 2025; 361: 124594. https://doi.org/10.1016/j.apcatb.2024.124594 DOI: https://doi.org/10.1016/j.apcatb.2024.124594

Sun Y, Xia L, Wang Y, Yao W, Wu Q, Min Y, et al. Efficient rifampicin degradation and simultaneous energy recovery in photocatalytic fuel cell based on the enhanced PMS and H2O2 synergistic activation on sulfur-doped CuMnO/carbon felt cathode. Sep Purif Technol. 2023; 326: 124831. https://doi.org/10.1016/j.seppur.2023.124831 DOI: https://doi.org/10.1016/j.seppur.2023.124831

Zhang J, Chang L, Zhu X, Yao J, Bai A, Wang J, et al. Large-scale and green synthesis of flower-like MgO from waste magnesite activated PMS for oxidation of doxycycline. Appl Surf Sci. 2025; 685: 161993. https://doi.org/10.1016/j.apsusc.2024.161993 DOI: https://doi.org/10.1016/j.apsusc.2024.161993

Guo L, Chen S, Jiang Y, Ding Q, Yang Y, Zhi J, et al. N, S co-doped porous carbon derived from waste medical masks to support LaFexCo1-xO3 as highly effective peroxymonosulfate catalysts for degradation of tetracycline. J Environ Chem Eng. 2024; 12(5): 113655. https://doi.org/10.1016/j.jece.2024.113655 DOI: https://doi.org/10.1016/j.jece.2024.113655

Zhang W, Liu J, Liu S, Huang E, Ren S, Gong L. Hollow ZIF-67-loaded sandy sediment for enhanced solar-driven water evaporation and PMS-activated pollutant degradation. Chem Eng J. 2025; 506: 159900. https://doi.org/10.1016/j.cej.2025.159900 DOI: https://doi.org/10.1016/j.cej.2025.159900

Zhou J, Zhao H, Zhang Y, Zhu H, Cai Y, Wang Y, et al. Solar-driven PMS activation over Ag/Halloysite nanotubes onto floatable integrated device for pollutant degradation and coupled interfacial water evaporation. Mol Catal. 2025; 583: 115248. https://doi.org/10.1016/j.mcat.2025.115248 DOI: https://doi.org/10.1016/j.mcat.2025.115248

Lin Y, Zhang Y, Wang Y, Lv Y, Yang L, Chen Z, et al. Efficient degradation and mineralization of polyethylene terephthalate microplastics by the synergy of sulfate and hydroxyl radicals in a heterogeneous electro-Fenton-activated persulfate oxidation system. J Hazard Mater. 2024; 478: 135635. https://doi.org/10.1016/j.jhazmat.2024.135635 DOI: https://doi.org/10.1016/j.jhazmat.2024.135635

Yu M, Chen M, Yang C, Niu J, Zhang J, Mu S, et al. Sustainable Fe(II) oxidation/reduction and release/recovery dual cycle in a multi-chamber Fe(III)/Peroxymonosulfate electrochemical system: Application, mechanism, and optimization. Chem Eng J. 2025; 512: 162601. https://doi.org/10.1016/j.cej.2025.162601 DOI: https://doi.org/10.1016/j.cej.2025.162601

Zou L, Hu Y, Lv Y, Liu Y, Ye X, Lin C, et al. Non-free radical regulation mechanism based on pH in the peroxymonosulfate activation process mediated by single-atom Co catalyst for the specific rapid degradation of emerging pollutants. J Colloid Interface Sci. 2025; 687: 617-29. https://doi.org/10.1016/j.jcis.2025.02.110 DOI: https://doi.org/10.1016/j.jcis.2025.02.110

Li J, Huang W, Yang L, Gou G, Zhou C, Li L, et al. Novel Ag3PO4 modified tubular carbon nitride with visible-light-driven peroxymonosulfate activation: A wide pH tolerance and reaction mechanism. Chem Eng J. 2022; 432: 133588. https://doi.org/10.1016/j.cej.2021.133588 DOI: https://doi.org/10.1016/j.cej.2021.133588

Ahn Y-Y, Kim J, Jeon J, Kim K. Freezing-enhanced degradation of azo dyes in the chloride-peroxymonosulfate system. Chemosphere. 2024; 359: 142261. https://doi.org/10.1016/j.chemosphere.2024.142261 DOI: https://doi.org/10.1016/j.chemosphere.2024.142261

Le N T H, Ju J, Kim B, Kim M S, Lee C, Kim S, et al. Freezing-enhanced non-radical oxidation of organic pollutants by peroxymonosulfate. Chem Eng J. 2020; 388: 124226. https://doi.org/10.1016/j.cej.2020.124226 DOI: https://doi.org/10.1016/j.cej.2020.124226

Tang Y, Wang L, Fu Y, Wang Z. Temperature-regulated non-radical to radical oxidation of organic pollutants by peroxymonosulfate: A tale of ice and fire. J Water Process Eng. 2025; 72: 107608. https://doi.org/10.1016/j.jwpe.2025.107608 DOI: https://doi.org/10.1016/j.jwpe.2025.107608

Guo X, Du B, Yan W, Wu Y, Feng J, Zhu Y. Efficient activation of peroxymonosulfate by sulfur vacancies engineered NiCo2S4 spheres for norfloxacin degradation. Environ Res. 2025; 283: 122129. https://doi.org/10.1016/j.envres.2025.122129 DOI: https://doi.org/10.1016/j.envres.2025.122129

Yu Z, Wang S, Chen Z, Yan X, Wang J, Jiang F, et al. Treating waste with waste: Enhancing performance of titanium gypsum by co-calcination of waste sludge for sulfamethoxazole degradation using peroxymonosulfate activation. J Water Process Eng. 2025; 74: 107880. https://doi.org/10.1016/j.jwpe.2025.107880 DOI: https://doi.org/10.1016/j.jwpe.2025.107880

Wu J, Wen Y, Leng Z, Zhang S, Li S, Zhou Z, et al. Enhanced atrazine degradation in water by N, P co-doped biochar based on peroxymonosulfate: Performance, mechanism and phytotoxicity reduction. J Environ Chem Eng. 2025; 13(2): 116002. https://doi.org/10.1016/j.jece.2025.116002 DOI: https://doi.org/10.1016/j.jece.2025.116002

Fu D, Zhao Z, Yan P, Chen Z, Zuo J. Oxygen-vacancy-rich N-doped NiFe2O4 activates peroxymonosulfate for efficient water purification. Sep Purif Technol. 2025; 376: 134061. https://doi.org/10.1016/j.seppur.2025.134061 DOI: https://doi.org/10.1016/j.seppur.2025.134061

Wang Y, Chen Y, Li Y, Zhang I Y, Huang R. Application of Fe-ethylene diamine tetraacetic acid complex to enhance the electrocatalytic activation of peroxymonosulfate under neutral pH condition for removal of refractory naphthenic acids. Sep Purif Technol. 2024; 341: 126862. https://doi.org/10.1016/j.seppur.2024.126862 DOI: https://doi.org/10.1016/j.seppur.2024.126862

Liu S, Bu W, Hou X, Lu S, Zhou C, Song X, et al. Insights into the enhanced removal of ciprofloxacin by Ni1Mn1Fe1-LDO activated peroxymonosulfate: Mechanism and application for antibiotic wastewater. Process Saf Environ Protect. 2025; 196: 106853. https://doi.org/10.1016/j.psep.2025.106853 DOI: https://doi.org/10.1016/j.psep.2025.106853

Li H, Wu J, Ren A, Qu Y, Zong X, Gong Y, et al. Shaddock peels biochar doping with Fe-Co bimetal for peroxymonosulfate activation on the degradation of tetracycline: The influence of HCO3− and PO43−. Environ Res. 2025; 275: 121411. https://doi.org/10.1016/j.envres.2025.121411 DOI: https://doi.org/10.1016/j.envres.2025.121411

Peng X, Zhou M, Yuan Q, Fan M, Zhu J, Gao N, et al. Degradation of organic pollutants in water by inactive and chloride salt-activated peroxymonosulfate (PMS): performance, kinetics, mechanisms and practical applications. J Ind Eng Chem. 2025 (in press). https://doi.org/10.1016/j.jiec.2025.06.008 DOI: https://doi.org/10.1016/j.jiec.2025.06.008

Saha P, Zhou C, Moradi M, Rijnaarts HM, Bruning H. Heat-activated peroxydisulfate and peroxymonosulfate-mediated degradation of benzotriazole: Effects of chloride on kinetics, pathways and transformation product toxicity. Chem Eng J Adv. 2023; 14: 100472. https://doi.org/10.1016/j.ceja.2023.100472 DOI: https://doi.org/10.1016/j.ceja.2023.100472

Huang Y, Zhang S, Chen L, Kou X, Hou Y, Wu Z, et al. Removal of ammonia nitrogen in maricultural wastewater with Cl−/peroxymonosulfate process: Performances and mechanism. J Environ Chem Eng. 2025; 13(2): 115549. https://doi.org/10.1016/j.jece.2025.115549 DOI: https://doi.org/10.1016/j.jece.2025.115549

Liu X, Wang Y, Crittenden J, Su Q, Mo H. Enhanced treatment of high chloride organic wastewater under lower peroxymonosulfate consumption: A pathway for the formation of Fe(IV)=O excited by chloride ions. Appl Catal, B. 2024; 359: 124471. https://doi.org/10.1016/j.apcatb.2024.124471 DOI: https://doi.org/10.1016/j.apcatb.2024.124471

Bao J, Wei Y, Lu Z, Yan S, Li H, Fang M, et al. Halogen ions enhanced peroxymonosulfate oxidation of emerging organic contaminants in municipal wastewater: Effect of environmental temperature. Chem Eng J. 2025; 504: 158290. https://doi.org/10.1016/j.cej.2024.158290 DOI: https://doi.org/10.1016/j.cej.2024.158290

Song Z, Zhang Y, He P, Liu X, Ren N, Chen Y. Feasibility of phenolic contaminant removal from high-saline wastewater by chloride-mediated activation of peroxymonosulfate (PMS) and peracetic acid (PAA). Sep Purif Technol. 2024; 341: 126856. https://doi.org/10.1016/j.seppur.2024.126856 DOI: https://doi.org/10.1016/j.seppur.2024.126856

Song S, Liu W, Wang M, Xue J, Yao M. Beneficial utilization of ball-milled carbon sand to activate peroxymonosulfate oxidation: Quantitation of ROS using probe-based kinetic models and mechanism insights. J Environ Manage. 2024; 370: 122568. https://doi.org/10.1016/j.jenvman.2024.122568 DOI: https://doi.org/10.1016/j.jenvman.2024.122568

Gao L, Guo Y, Huang J, Wang B, Deng S, Yu G, et al. Simulating micropollutant abatement during cobalt mediated peroxymonosulfate process by probe-based kinetic models. Chem Eng J. 2022; 441: 135970. https://doi.org/10.1016/j.cej.2022.135970 DOI: https://doi.org/10.1016/j.cej.2022.135970

Sun Y, Ma C, Wu D, Liu X, Li N, Fan X, et al. Coating CoFe2O4 shell on Fe particles to increase the utilization efficiencies of Fe and peroxymonosulfate for low-cost Fenton-like reactions. Water Res. 2023; 244: 120542. https://doi.org/10.1016/j.watres.2023.120542 DOI: https://doi.org/10.1016/j.watres.2023.120542

Xu X, Peng C, Shao X, Gong K, Zhao X, Xie W, et al. Unveiling the impacts of biodegradable microplastics on cadmium toxicity, translocation, transformation, and metabolome in lettuce. Sci Total Environ. 2024; 957: 177669. 10.1016/j.scitotenv.2024.177669 DOI: https://doi.org/10.1016/j.scitotenv.2024.177669

Yuan T, Zhao Y, An Y, Li X. Unraveling the contribution of Co(IV) and free radicals in Co2+-activated Peroxymonosulfate process: Reaction mechanism, degradation pathway, and DFT calculation. Emerging Contam. 2024; 10(1): 100273. https://doi.org/10.1016/j.emcon.2023.100273 DOI: https://doi.org/10.1016/j.emcon.2023.100273

Zhang Y, He R, Sun Y, Zhao J, Zhang X, Wang J, et al. Influence of microplastics and environmentally persistent free radicals on the ability of biochar components to promote degradation of antibiotics by activated peroxymonosulfate. Environ Pollut. 2024; 349: 123827. https://doi.org/10.1016/j.envpol.2024.123827 DOI: https://doi.org/10.1016/j.envpol.2024.123827

Zhou X, Li Z, Shi Y, Miao Y, Liu Y, Yin R, et al. Piezoelectric field-modulated peroxymonosulfate nonradical oxidation of bisphenol A via Bio-MOF-1: The dominant contribution of singlet oxygen. Chem Eng J. 2024; 492: 152368. https://doi.org/10.1016/j.cej.2024.152368 DOI: https://doi.org/10.1016/j.cej.2024.152368

Li S, Zou J, Wu J, Lin J, Wu Z, Tang C, et al. Overlooked role of protocatechuic acid in enhancing the selective elimination of sulfonamide antibiotics in Fe(III)/peroxymonosulfate process under actually neutral pH conditions. Chem Eng J. 2024; 497: 154581. https://doi.org/10.1016/j.cej.2024.154581 DOI: https://doi.org/10.1016/j.cej.2024.154581

Shi L, Li Y, Dong H, Sun J, Xia C, Cai L, et al. Heterostructural Cu2S@CuO nanoarrays enable peroxymonosulfate activation for sulfamethoxazole degradation through non-free radical pathways. Desalin. 2025; 600: 118527. https://doi.org/10.1016/j.desal.2025.118527 DOI: https://doi.org/10.1016/j.desal.2025.118527

Qin X, Li H, Yu Y, Yang Y, Wang K, Ma T, et al. Ornidazole degradation based on peroxymonosulfate activation induced by oxygen vacancies (OV)-enriched Cu-Co-TiO2: Coexistence of free-radical and non-radical pathways. Process Saf Environ Protect. 2024; 192: 1008-25. https://doi.org/10.1016/j.psep.2024.10.099 DOI: https://doi.org/10.1016/j.psep.2024.10.099

Downloads

Published

2025-08-20

Issue

Section

Articles

How to Cite

1.
Recent Progress in Using Peroxymonosulfate for the Treatment of Organic Wastewater – A Brief Review. Glob. Environ. Eng. [Internet]. 2025 Aug. 20 [cited 2026 Feb. 11];12:37-60. Available from: https://www.avantipublishers.com/index.php/tgevnie/article/view/1648

Similar Articles

11-20 of 26

You may also start an advanced similarity search for this article.