Removal of Methyl Orange from Aqueous Solutions by Using Zn-Al Layered Double Hydroxide as Photocatalyst


layered double hydroxides
structural characterization
calcination product
photocatalytic activity
dye removal.

How to Cite

Ancuta-Corina Marcu, Laura Cocheci, Paul Barvinschi, Aniela Pop. Removal of Methyl Orange from Aqueous Solutions by Using Zn-Al Layered Double Hydroxide as Photocatalyst. Glob. Environ. Eng. [Internet]. 2015 Jan. 10 [cited 2023 Jan. 28];1(2):36-41. Available from:


The Zn-Al layered double hydroxide (LDH) was prepared using co-precipitation method at constant pH and characterized from structural point of view. Due to the high concentration of ZnO obtained after LDH calcinations, the material can be used as photocatalyst in removal of organic persistent compounds from water. The photocatalytic activity of the as-synthesized and calcined materials was evaluated for the degradation of Methyl Orange dye under UV irradiation. The influence of calcination temperature, solid: liquid ratio and initial dye concentration on photocatalytic activity of LDH was studied. The increase of calcination temperature and solid: liquid ratio and the decrease of initial dye concentration leads to increasing degradation efficiency.


Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays: preparation, properties and applications, Catal. Today 1991; 11: 173-301.

Chang Z, Zhao N, Liu J, Li F, Evans DG, Duan X, Forano C, de Roy M. Cu–Ce–O mixed oxides from Ce-containing layered double hydroxide precursors: Controllable preparation and catalytic performance. J Solid State Chem 2011; 184: 3232-3239.

Lv L, He J, Wei M, Evans DG, Duan X. Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: Equilibrium and kinetic studies. Water Res 2006; 40: 735-743.

Kustrowski P, Sulkowska D, Chmielarz L, Olszewski P, Rafalska-Lasocha A, Dziembaj R. Effect of rehydration conditions on the catalytic activity of hydrotalcite-derived Mg- Al oxides in aldilization of acetone. React Kinet Catal Lett 2005; 85: 383-390.

Takehira K, Shishido T. Preparation of supported metal catalysts starting from hydrotalcites as the precursors and their improvements by adopting memory effect. Catal Surv Asia 2007; 11: 1-30.

Jimenez-Sanchidrian C, Hidalgo JM, Llamas R, Ruiz JR. Baeyer–Villiger oxidation of cyclohexanone with hydrogen peroxide/benzonitrile over hydrotalcites as catalysts. Appl Catal A 2006; 312: 86-94.

He FA, Zhang LM. New polyethylene nanocomposites prepared by in-situ polymerization method using nickel - diimine catalyst supported on organo-modified ZnAl layered double hydroxide. Compos Sci Technol 2007; 67: 3226-3232.

Grafova IA, Grafov AV, Costantino U, Marmottini F, Dias ML. Layered double hydroxides as supports for norbornene addition polymerisation catalysts. Z Naturforsch B: Chem Sci 2003; 58b: 1069-1074.

Carriazo D, del Arco M, Martin C, Rives V. A comparative study between chloride and calcined carbonate hydrotalcites as adsorbents for Cr(VI). Appl Clay Sci 2007; 37: 231-239.

Hsu LC, Wang SL, Tzou YM, Lin CF, Chen JH. The removal and recovery of Cr(VI) by Li/Al layered double hydroxide (LDH). J Hazard. Mater 2007; 142: 242-249.

Park M, Choi CL, Seo YJ, Yeo SK, Choi J, Komarneni S, et al. Reactions of Cu2+ and Pb2+ with Mg/Al layered double hydroxide. Appl Clay Sci 2007; 37: 143-148.

Zhao D, Sheng G, Hu J, Chen C, Wang X. The adsorption of Pb(II) on Mg2Al layered double hydroxide. Chem Eng J 2011; 171: 167-174.

Paredes SP, Fetter G, Bosch P, Bulbulian S. Iodine sorption by microwave irradiated hydrotalcites. J Nuclear Mater 2006; 359: 155-161.

Gasser MS, Mohsen HT, Aly HF. Humic acid adsorption onto Mg/Fe layered double hydroxide. Colloids Surf A 2008; 331: 195-201.

Vreysen S, Maes A. Adsorption mechanism of humic and fulvic acid onto Mg/Al layered double hydroxides. Appl Clay Sci 2008; 38: 237-249.

Pode R, Cocheci L, Popovici E, Seftel EM, Pode V. Degradation of p-Chlorophenol by Advanced Oxidation Processes. Rev Chim 2008; 59: 898-901.

Tzompantzi F, Mendoza-Damian G, Rico JL, Mantilla A. Enhanced photoactivity for the phenol mineralization on ZnAlLamixed oxides prepared from calcined LDHs. Catalysis Today 2014; 220-222: 56-60.

El Gaini L, Lakraimi M, Sebbar E, Meghea A, Bakasse M. Removal of indigo carmine dye from water to Mg–Al–CO3- calcined layered double hydroxides. J Hazard Mater 2009; 161: 627-632.

Auxilio AR, Andrews PC, Junk PC, Spiccia L. The adsorption behavior of C.I. Acid Blue 9 onto calcined Mg–Al layered double hydroxides. Dyes Pigm 2009; 81: 103-112.

Seftel EM, Popovici E, Mertens M, De Witte K, Van Tendeloo G, Cool P, Vansant EF, Zn–Al layered double hydroxides: Synthesis, characterization and photocatalytic application. Micropor Mesopor Mat 2008; 113: 296-304.

Michalik A, Serwicka EM, Bahranowski K, Gawel A, Tokarz M, Nilsson J. Mg,Al-hydrotalcite-like compounds as traps for contaminants of paper furnishes. Appl Clay Sci 2008; 39: 86-97.

Jin S, Fallgren PH, Morris JM, Chen Q. Removal of bacteria and viruses from waters using layered double hydroxide nanocomposites. Sci Technol Adv Mat 2007; 8: 67-70.

Al-Qaradawi S, Salman R. Photocatalytic degradation of methyl orange as a model compound. J Photoch Photobio A: Chem 2002; 148: 161-168.

Balsamo N, Medieta S, Oliva M, Eimer G, Crivello M. Synthesis and characterization of metal mixed oxides from Layered Double Hydroxides. Procedia Mater Sci 2010; 1: 506-513.

Soutsas K, Karayannis V, Poulios I, Riga A, Ntampegliotis K, Spiliotis X, et al. Decolorization and degradation of reactive azo dyes via heterogeneous photocatalytic processes. Desalination 2010; 250: 345-350.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2015 Ancuta-Corina Marcu, Laura Cocheci, Paul Barvinschi, Aniela Pop