Homoclinic Solutions for Some Nonperiodic Fourth Order Differential Equations with Sublinear Nonlinearities

Authors

  • Ying Wang Tianjin Polytechnic University, Tianjin 300387, China
  • Ziheng Zhang Tianjin Polytechnic University, Tianjin 300387, China

DOI:

https://doi.org/10.15377/2409-5761.2017.04.3

Keywords:

Homoclinic solutions, Critical point, Variational methods, Genus

Abstract

In this paper we investigate the existence of homoclinic solutions for the following fourth order nonautonomous differential equations; u(4) + wu’’ + a(x)u = f (x,u), (FDE) where w is a constant, a ɛ C(R, R) and f ɛ C(R x R, R) . The novelty of this paper is that, when (FDE) is nonperiodic, i.e., a and f are nonperiodic in x, assuming that a is bounded from below and f is sublinear as | u |→ +ꚙ , we establish one new criterion to guarantee the existence and multiplicity of homoclinic solutions of (FDE). Recent results in the literature are generalized and improved.

Downloads

Download data is not yet available.

Author Biographies

  • Ying Wang, Tianjin Polytechnic University, Tianjin 300387, China
    Department of Mathematics
  • Ziheng Zhang, Tianjin Polytechnic University, Tianjin 300387, China
    Department of Mathematics

References

Amick CJ and Toland JF. Homoclinic orbits in the dynamic phase space analogy of an elastic strut, European. J Appl Math 1992; 3: 97-114. https://doi.org/10.1017/S0956792500000735 DOI: https://doi.org/10.1017/S0956792500000735

Bretherton FP. Resonant interaction between waves: the case of discrete oscillations. J Fluid Mech 1964; 20: 457-479. https://doi.org/10.1017/S0022112064001355 DOI: https://doi.org/10.1017/S0022112064001355

Buffoni B. Periodic and homoclinic orbits for Lorentz- Lagrangian systems via variational method. Nonlinear Anal 1996; 26: 443-462. https://doi.org/10.1016/0362-546X(94)00290-X DOI: https://doi.org/10.1016/0362-546X(94)00290-X

Buffoni B, Groves M and Toland JF. A plethora of solitary gravity-capillary water waves with nearly critical Bond and Froude numbers. Philos Trans Roy Soc London Ser A 1996; 354(1707): 575-607. https://doi.org/10.1098/rsta.1996.0020 DOI: https://doi.org/10.1098/rsta.1996.0020

Buryak AV and Kivshar Y. Solitons due to second harmonic generation. Phys Lett A 1995; 197: 407-412. https://doi.org/10.1016/0375-9601(94)00989-3 DOI: https://doi.org/10.1016/0375-9601(94)00989-3

Chapiro G, Faria LFO and Maldonado AD. On the existence of solutions for a class of fourth order differential equations. J Math Anal Appl 2015; 427: 126-139. https://doi.org/10.1016/j.jmaa.2015.01.012 DOI: https://doi.org/10.1016/j.jmaa.2015.01.012

Coullet P, Elphick C and Repaux D. Nature of spatial chaos. Phys Rev Lett 1987; 58: 431-434. https://doi.org/10.1103/PhysRevLett.58.431 DOI: https://doi.org/10.1103/PhysRevLett.58.431

Dee GT and van Saarloos W. Bistable systems with propagating fronts leading to pattern formation. Phys Rev Lett 1988; 60: 2641-2644. https://doi.org/10.1103/PhysRevLett.60.2641 DOI: https://doi.org/10.1103/PhysRevLett.60.2641

Lega J, Molonev J and Newell A. Swift-Hohenberg for lasers. Phys Rev Lett 1994; 73: 2978-2981. https://doi.org/10.1103/PhysRevLett.73.2978 DOI: https://doi.org/10.1103/PhysRevLett.73.2978

Li F, Sun JT, Lu GF and Lv CJ. Infinitely many homoclinic solutions for a nonperiodic fourth-order differential equation without (AR)-condition. Appl Math Comput 2014; 241: 36-41. https://doi.org/10.1016/j.amc.2014.04.067 DOI: https://doi.org/10.1016/j.amc.2014.04.067

Li TX, Sun JT and Wu TF. Existence of homoclinic solutions for a fourth order differential equation with a parameter. Appl Math Comput 2015; 251: 499-506. https://doi.org/10.1016/j.amc.2014.11.056 DOI: https://doi.org/10.1016/j.amc.2014.11.056

Li CY. Homoclinic orbits of two classes of fourth order semilinear differential equations with periodic nonlinearity. J Appl Math Comput 2008; 27: 107-116. https://doi.org/10.1007/s12190-008-0045-4 DOI: https://doi.org/10.1007/s12190-008-0045-4

Li CY. Remarks on homoclinic solutions for semilinear fourthorder differential equations without periodicity. Appl Math J Chinese Univ 2009; 24: 49-55. https://doi.org/10.1007/s11766-009-1948-z DOI: https://doi.org/10.1007/s11766-009-1948-z

Peletier LA and Troy WC. Spatial Patterns: Higher Order Models in Physics and Mechnics, Birkhäuser, Boston, 2001. https://doi.org/10.1007/978-1-4612-0135-9 DOI: https://doi.org/10.1007/978-1-4612-0135-9

Rabinowitz PH. Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics. The American Mathematical Society, Providence, RI, 1986; 65. https://doi.org/10.1090/cbms/065 DOI: https://doi.org/10.1090/cbms/065

Salvatore A. Homoclinic orbits for a special class of nonautonomous Hamiltonian systems. Nonlinear Anal 1997; 30: 4849-4857. https://doi.org/10.1016/S0362-546X(97)00142-9 DOI: https://doi.org/10.1016/S0362-546X(97)00142-9

Sun JT and Wu TF. Two homoclinic solutions for a nonperiodic fourth order differential equation with a perturbation. J Math Anal Appl 2014; 413: 622-632. https://doi.org/10.1016/j.jmaa.2013.12.023 DOI: https://doi.org/10.1016/j.jmaa.2013.12.023

Sun JT, Wu TF and Li F. Concentration of homoclinic solutions for some fourth-order equations with sublinear indefinite nonlinearities. Appl Math Lett 2014; 38: 1-6. https://doi.org/10.1016/j.aml.2014.06.009 DOI: https://doi.org/10.1016/j.aml.2014.06.009

Tersian S and Chaparova J. Periodic and homoclinic solutions of extended Fisher-Kolmogorov equations. J Math Anal Appl 2001; 260: 490-506. https://doi.org/10.1006/jmaa.2001.7470 DOI: https://doi.org/10.1006/jmaa.2001.7470

Willem M. Minimax Theorems, Progr. Nonlinear Differential Equations Appl, Birkhäuser, Boston, 1996; 24. DOI: https://doi.org/10.1007/978-1-4612-4146-1

Yang L. Infinitely many homoclinic solutions for nonperiodic fourth order differential equations with general potentials. Abst Appl Anal 2014, Art. ID 435125, 7 pp. DOI: https://doi.org/10.1155/2014/435125

Yang L. Multiplicity of homoclinic solutions for a class of nonperiodic fourth order differential equations with general perturbation. Abstr Appl Anal 2014; Art. ID 126435, 5 pp. DOI: https://doi.org/10.1155/2014/126435

Zhang ZH and Yuan R. Homoclinic solutions for a nonperiodic fourth order differential equations without coercive conditions. Appl Math Comput 2015; 250: 280-286. https://doi.org/10.1016/j.amc.2014.10.114 DOI: https://doi.org/10.1016/j.amc.2014.10.114

Downloads

Published

2017-12-19

Issue

Section

Articles

How to Cite

Homoclinic Solutions for Some Nonperiodic Fourth Order Differential Equations with Sublinear Nonlinearities. (2017). Journal of Advances in Applied & Computational Mathematics, 4(1), 15-22. https://doi.org/10.15377/2409-5761.2017.04.3

Similar Articles

1-10 of 46

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)