Vector Lattice Data Analysis: Fitting and Model Uncertainty
Abstract - 50
PDF

Keywords

Vector lattices
Model uncertainty
Functional data analysis

How to Cite

Kountzakis, C., & Almohaimeed, A. (2025). Vector Lattice Data Analysis: Fitting and Model Uncertainty. Journal of Advances in Applied & Computational Mathematics, 12, 47–55. https://doi.org/10.15377/2409-5761.2025.12.4

Abstract

Functional data analysis (FDA) is a popular research area of data analysis that is well-suited for modeling complex data structures such as time series data and images. In Linear Regression models, the random variables are often described using a finite--dimensional vector space, under the assumption that the random variables are represented by a finite set of parameters. FDA allows us to model random variables as functions. This can lead to a more flexible and expressive approach to the statistical model. Within FDA, the specific paper investigates the potential of vector lattices to enhance model flexibility and address model uncertainty. The limitations of finite-dimensional vector spaces in capturing the complexities of real-world random variables are discussed. An investigation is conducted into the concept of Vector Lattice Linear Regression Models (VLLM), highlighting their ability to effectively handle model uncertainty.

https://doi.org/10.15377/2409-5761.2025.12.4
PDF

References

Wang JL, Chiou JM, Müller HG. Functional data analysis. Annu Rev Stat Appl. 2016; 3(1): 257-95. https://doi.org/10.1146/annurev-statistics-041715-033624

Ramsay JO, Dalzell C. Some tools for functional data analysis. J R Stat Soc Series B Stat Methodol. 1991; 53(3): 539-61. https://doi.org/10.1111/j.2517-6161.1991.tb01844.x

Gertheiss J, Rügamer D, Liew BX, Greven S. Functional data analysis: An introduction and recent developments. Biometr J. 2024; 66(7): e202300363. https://doi.org/10.1002/bimj.202300363

Kokoszka P, Reimherr M. Introduction to functional data analysis. New York: Chapman and Hall/CRC; 2017. https://doi.org/10.1201/9781315117416

Horváth L, Kokoszka P. Inference for functional data with applications. Vol. 200. NY: Springer New York; 2012. https://doi.org/10.1007/978-1-4614-3655-3

He S, Yan X. Functional principal subspace sampling for large scale functional data analysis. Electron J Stat. 2022; 16(1): 2621-82. https://doi.org/10.1214/22-EJS2010

Riccio D. Functional data analysis: A solution to the curse of dimensionality using gradient boosting and FDA to classify ECG data in Python. Towards Data Science, Dec 7, 2022.

Levitin DJ, Nuzzo RL, Vines BW, Ramsay JO. Introduction to functional data analysis. Can Psychol. 2007; 48(3): 135. https://doi.org/10.1037/cp2007014

Ullah S, Finch CF. Applications of functional data analysis: A systematic review. BMC Med Res Methodol. 2013; 13(1): 43. https://doi.org/10.1186/1471-2288-13-43

Van der Walt JH. Order convergence on Archimedean vector lattices and applications [dissertation]. Pretoria (South Africa): University of Pretoria; 2006.

Kalauch A, Malinowski H. Vector lattice covers of ideals and bands in pre-Riesz spaces. Quaest Math. 2019; 42(7): 919-37. https://doi.org/10.2989/16073606.2018.1501620

Jameson G. Ordered linear spaces. Springer Berlin Heidelberg; 1970. https://doi.org/10.1007/BFb0059130

Abramovich YA, Aliprantis CD, Polyrakis IA. Lattice-subspaces and positive projections. Proc R Ir Acad Sect A Math Phys Sci. 1994; 94A: 237-53.

Chernozhukov V, Newey W, Singh R, Syrgkanis V. Adversarial estimation of riesz representers. arXiv preprint arXiv:2101.00009. 2020.

Aliprantis CD, Harris D, Tourky R. Riesz estimators. J Econom. 2007; 136(2): 431-56. https://doi.org/10.1016/j.jeconom.2005.11.005

Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K. 2006 IPCC guidelines for national greenhouse gas inventories. 2006.

Werner J, Aliprantis CD, Brown DJ, Polyrakis I. Yudin cones and inductive limit topologies. 1996.

Aliprantis CD, Tourky R. Cones and duality. Vol. 84. American Mathematical Society; 2007. https://doi.org/10.1090/gsm/084

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Christos Kountzakis, Amani Almohaimeed

Downloads

Download data is not yet available.