Fabrication and Characterization of Thin-Film SOFC Supported by Microchannel-Structured Zirconia Substrate for Direct Methane Operation

Authors

  • Myongjin Lee Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
  • Yun Gan Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
  • Chunyang Yang Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
  • Chunlei Ren Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
  • Xingjian Xue Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA

DOI:

https://doi.org/10.15377/2409-787X.2021.08.6

Keywords:

Stability, Ni-ZrSDC Anode, Hydrocarbon Fuels, Microtubular SOFC, Microchanneled Inert Support.

Abstract

Ni-cermet anode demonstrates excellent catalytic activity and electrical conductivity but suffers from carbon deposition issue. To utilize Ni-cermet anode while preventing carbon deposition, a synergic strategy is employed to design anode electrode. In particular, Zr is incorporated into Ce0.8Sm0.2O2-δ lattice to tailor oxygen storage and catalytic properties of Ni-Ce0.8-xSm0.2ZrxO2-δ anode for improving electrochemical oxidizations of various fuel species. An inert thick YSZ microtubular substrate with radially well-aligned microchannels open at the inner surface is used to support multi thin functional layers of solid oxide cell, i.e., Ni current collector, Ni-Ce0.8-xSm0.2ZrxO2-δ anode, YSZ/SDC electrolyte, and LSCF cathode. The thick YSZ substrate is able to inhibit the ratio of fuel to product gases in the thin anode functional layer, which favors the prevention of carbon buildup in the thin anode layer when synergistically combined with Ni-Ce0.8-xSm0.2ZrxO2-δ anode material. The microchannels embedded in the YSZ substrate can also avoid too much dilutions of the fuel in the anode functional layer. The cell is fabricated and tested with both hydrogen and methane as the fuel. A short-term test is conducted with methane as fuel and good stability is obtained. The fundamental mechanisms for the prevention of carbon buildup in anode functional layer are also discussed.

Downloads

Download data is not yet available.

References

Ormerod RM. Chem Soc Rev. 2003; 32: 17. https://doi.org/10.1177/1030570X0301600102 DOI: https://doi.org/10.1039/b105764m

Minh N. Solid State Ionics, 2004; 174: 271. https://doi.org/10.1016/j.ssi.2004.07.042 DOI: https://doi.org/10.1016/j.ssi.2004.07.042

Zhan Z, Barnett SA. Science, 2005; 308: 844. https://doi.org/10.1126/science.1109213 DOI: https://doi.org/10.1126/science.1109213

Nakagawa N. Ishida M. Ind Eng Chem Res. 1988; 27: 1181. https://doi.org/10.1021/ie00079a016 DOI: https://doi.org/10.1021/ie00079a016

Yang L, Wang S, Blinn K, Liu M, Liu Z, Cheng Z, Liu M. Science 2009; 326: 126. https://doi.org/10.1126/science.1174811 DOI: https://doi.org/10.1126/science.1174811

Takeguchi T, Kikuchi R, Yano T, Eguchi K, Murata K. Catal Today 2003; 84: 217. https://doi.org/10.1016/S0920-5861(03)00278-5 DOI: https://doi.org/10.1016/S0920-5861(03)00278-5

Sumi H, Yamaguchi T, Hamamoto K, Suzuki T, Fujishiro Y. J Power Sources 2012; 220: 74. https://doi.org/10.1016/j.jpowsour.2012.07.106 DOI: https://doi.org/10.1016/j.jpowsour.2012.07.106

Kim Y, Kim JH, Bae J, Yoon CW, Nam SW. J. Phys Chem C 2012; 116: 13281. https://doi.org/10.1021/jp3035693 DOI: https://doi.org/10.1021/jp3035693

Miao H, Liu G, Chen T, He C, Peng J, Ye S, Wang WG. J Solid State Electrochem. 2015; 19: 639. https://doi.org/10.1007/s10008-014-2640-7 DOI: https://doi.org/10.1007/s10008-014-2640-7

Myung J, Kim SD, Shin TH, Lee D, Irvine JTS, Moon J, Hyun SH. J Mater Chem A 2015; 3: 13801. https://doi.org/10.1039/C4TA06037G DOI: https://doi.org/10.1039/C4TA06037G

Zhu H, Wang W, Ran R, Shao Z. Int J Hydrog Energy, 2013; 38: 3741. https://doi.org/10.1016/j.ijhydene.2013.01.032 DOI: https://doi.org/10.1016/j.ijhydene.2013.01.032

Suzuki T, Yamaguchi T, Hamamoto K, Fujishiro Y, Awano M, Sammes N. Energy Environ Sci. 2011; 4: 940. https://doi.org/10.1039/C0EE00231C DOI: https://doi.org/10.1039/C0EE00231C

Wang K, Ran R, Shao Z. J Power Sources 2007; 170: 251. https://doi.org/10.1016/j.jpowsour.2007.03.070 DOI: https://doi.org/10.1016/j.jpowsour.2007.04.030

Yoon D, Manthiram A. Energy Environ Sci. 2014, 7, 3069. https://doi.org/10.1039/C4EE01455C DOI: https://doi.org/10.1039/C4EE01455C

Ma J, Jiang C, Connor PA, Cassidy M, Irvine JTS. J Mater Chem A 2015; 3: 19068. https://doi.org/10.1039/C5TA06421J DOI: https://doi.org/10.1039/C5TA06421J

Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ. J Electrochem Soc. 2002; 149: A247. https://doi.org/10.1149/1.1445170 DOI: https://doi.org/10.1149/1.1445170

Nikolla E, Schwank J, Linic S. J Electrochem Soc. 2009; 156: B1312. https://doi.org/10.1149/1.3208060 DOI: https://doi.org/10.1149/1.3208060

Wu X, Zhou X, Tian Y, Kong X, Zhang J, Zuo W. Int J Hydrog Energy 2015; 40: 16484. https://doi.org/10.1016/j.ijhydene.2015.09.121 DOI: https://doi.org/10.1016/j.ijhydene.2015.09.121

Qiao J, Zhang N, Wang Z, Mao Y, Sun K, Yuan Y. Fuel Cells, 2009; 9: 729. https://doi.org/10.1002/fuce.200800104 DOI: https://doi.org/10.1002/fuce.200800104

Tao S, Irvine JTS. Nat Mater, 2003; 2: 320. https://doi.org/10.1038/nmat871 DOI: https://doi.org/10.1038/nmat871

Atkinson A, Barnett S, Gorte RJ, Irvine JTS, McEvoy AJ, Mogensen M, et al. Nat Mater. 2004; 3: 17. https://doi.org/10.1038/nmat1040 DOI: https://doi.org/10.1038/nmat1040

Huang YH, Dass RI, Xing ZL, Goodenough JB. Science 2006; 312: 254. https://doi.org/10.1126/science.1125877 DOI: https://doi.org/10.1126/science.1125877

Sengodan S, Choi S, Jun A, Shin TH, Ju YW, Jeong HY, et al. Nat Mater. 2015; 14: 205. https://doi.org/10.1038/nmat4166 DOI: https://doi.org/10.1038/nmat4166

Dong G, Yang C, He F, Jiang Y, Ren C, Gan Y, et al. RSC Adv. 2017; 7: 22649. https://doi.org/10.1039/C7RA03143B DOI: https://doi.org/10.1039/C7RA03143B

Wang W, Su C, Wu Y, Ran R, Shao Z. Chem Rev. 2013; 113: 8104. https://doi.org/10.1021/cr300491e DOI: https://doi.org/10.1021/cr300491e

McIntosh S, Gorte RJ. Chem Rev. 2004; 104: 4845. https://doi.org/10.1021/cr020725g DOI: https://doi.org/10.1021/cr020725g

Lin Y, Zhan Z, Barnett SA., J Power Sources 2006; 158: 1313. https://doi.org/10.1016/j.jpowsour.2005.09.060 DOI: https://doi.org/10.1016/j.jpowsour.2005.09.060

Zhu H, Colclasure AM, Kee RJ, Lin Y, Barnett SA. J Power Sources 2006; 161: 413. https://doi.org/10.1016/j.jpowsour.2006.04.101 DOI: https://doi.org/10.1016/j.jpowsour.2006.04.101

Bierschenk DM, Pillai MR, Lin Y, Barnett SA. Fuel Cells, 2010; 10: 1129. https://doi.org/10.1002/fuce.201000005 DOI: https://doi.org/10.1002/fuce.201000005

Novik NN, Konakov VG, Archakov IY. Rev Adv Materi Sci. 2015; 40: 188.

Zhao K, Du Y. J Power Sources 2017; 347: 79. https://doi.org/10.1016/j.jpowsour.2017.01.113 DOI: https://doi.org/10.1016/j.jpowsour.2017.01.113

Larrondo S, Vidal M, Irigoyen B, Craievich AF, Lamas DG, Fabregas IO, et al. Catal Today, 2005; 107: 53. https://doi.org/10.1016/j.cattod.2005.07.110 DOI: https://doi.org/10.1016/j.cattod.2005.07.110

Laguna OH, Sarria FR, Centeno MA, Odriozola JA. J Catalysis 2010; 276: 360. https://doi.org/10.1016/j.jcat.2010.09.027 DOI: https://doi.org/10.1016/j.jcat.2010.09.027

Venkataramana K, Madhusudan C, Madhuri C, Reddy CV. Materials Today: Proceedings 3, 2016; 3: 3908. https://doi.org/10.1016/j.matpr.2016.11.048 DOI: https://doi.org/10.1016/j.matpr.2016.11.048

Ren C, Gan Y, Lee M, Yang C, He F, Jiang Y. et al. J Electrochem Soc. 2016; 163: F1115 https://doi.org/10.1149/2.1271609jes DOI: https://doi.org/10.1149/2.1271609jes

Ren C, Gan Y, Yang C, Lee M, Dong G, Xue X. J Electrochem Soc. 2017; 164: F722. https://doi.org/10.1149/2.0311707jes DOI: https://doi.org/10.1149/2.0311707jes

Ren C, Gan Y, Yang C, Lee M, Green RD, Xue X. J Appl Electrochem. 2018; 48: 959. https://doi.org/10.1007/s10800-018-1225-z DOI: https://doi.org/10.1007/s10800-018-1225-z

Lee MJ, Jung JH, Zhao K, Kim BH, Xu Q, Ahn BG, et al. J Eur Ceram Soc. 2014; 34: 1771. https://doi.org/10.1016/j.jeurceramsoc.2013.12.042 DOI: https://doi.org/10.1016/j.jeurceramsoc.2013.12.042

Panthi D, Choi B, Tsutsumi A. J Solid State Electrochem. 2017; 21: 255. https://doi.org/10.1007/s10008-016-3366-5 DOI: https://doi.org/10.1007/s10008-016-3366-5

Downloads

Published

2021-10-12

Issue

Section

Articles

How to Cite

1.
Fabrication and Characterization of Thin-Film SOFC Supported by Microchannel-Structured Zirconia Substrate for Direct Methane Operation. Int. J. Pet. Technol. [Internet]. 2021 Oct. 12 [cited 2026 Feb. 13];8:80-92. Available from: https://www.avantipublishers.com/index.php/ijpt/article/view/1063

Similar Articles

1-10 of 42

You may also start an advanced similarity search for this article.