Entransy Analysis of an Irreversible Diesel Cycle
PDF

Keywords

Entransy
irreversibility
Diesel cycle
exergy.

How to Cite

1.
Emin Açıkkalp. Entransy Analysis of an Irreversible Diesel Cycle. Glob. J. Energ. Technol. Res. Updat. [Internet]. 2014 Sep. 29 [cited 2022 May 23];1(1):19-24. Available from: https://www.avantipublishers.com/index.php/gjetru/article/view/49

Abstract

The purpose of this paper is to research an irreversible Diesel cycle by using entransy approach. Entransy may be expressed as heat transfer potential of a subject and it has begun to investigate as a new thermodynamic assessment parameter. Optimization of heat transfer processes is very important, because of their extensity. Result of optimizing heat transfer is to use energy efficiently and decrease CO2 emission that is main reason of the global warming. Because of the these reasons, entransy analysis of a Diesel cycle is investigated and result are presented. Some obtained results for entransy analysis are: entransy efficiency has minimum (0.191) at x = 19.296, has a maximum (1.538x106 kW K) at x = 8.316 for ηηC = 1. cycle and has a maximum point at x = 6.959 and it value is 1.341x106 kW K for ηηC = 0.8.

https://doi.org/10.15377/2409-5818.2014.01.01.2
PDF

References

Wang W, Cheng XT, Liang XG. Entransy theory for the optimization of heat transfer - A review and update. Int J Heat Mass Transfer 2013; 63: 65-81. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.03.019

Bergles AE. Heat transfer enhancement - the maturing of second-generation heat transfer technology. Heat Transfer Eng 1997; 18: 47-55. http://dx.doi.org/10.1080/01457639708939889

Webb RL. Principles of Enhanced Heat Transfer. John Wiley & Sons, NewYork 1994.

Guo ZY, Zhu HY, Liang XG. Entransy—a physical quantity describing heat transfer ability. Int J Heat Mass Transfer 2007; 50: 2545-56. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.11.034

Cheng XT, Liang XG. Entransy loss in thermodynamic processes and its application. Energy 2012; 44: 964-72. http://dx.doi.org/10.1016/j.energy.2012.04.054

Xu MT. The thermodynamic basis of entransy and entransy dissipation. Energy 2011; 36: 4272-7. http://dx.doi.org/10.1016/j.energy.2011.04.016

Cheng XT, Wang WH, Liang XG. Entransy analysis of open thermodynamic systems. Chin Sci Bull 2012; 57: 2934-40. http://dx.doi.org/10.1007/s11434-012-5224-x

Wang W, Cheng XT, Liang XG. Entropy and entransy analyses and optimizations of the Rankine cycle. Energ Convers Manage 2013; 68: 82-88. http://dx.doi.org/10.1016/j.enconman.2012.12.020

Liu W, Liu ZC, Jia H, et al. Entransy expression of the secondd law of thermodynamics and its application to optimization in heat transfer process. Int J Heat Mass Transfer 2011; 54: 3049-59. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.02.041

Chen LG, Wei SH, Sun FR. Constructal entransy dissipation minimization for ‘volume-point’. heat conduction. J Phys D Appl Phys 2008; 41: 195506. http://dx.doi.org/10.1088/0022-3727/41/19/195506

Xie ZH, Chen LG, Sun FR. Constructal optimization for geometry of cavity by taking entransy dissipation minimization as objective. Sci China Ser E Tech Sci 2009; 52: 3413-504.

Chen Q, Ren JX. Generalized thermal resistance for convective heat transfer and its relation to entransy dissipation. Chin Sci Bull 2008; 53: 3753-61. http://dx.doi.org/10.1007/s11434-008-0526-8

Cheng XT, Liang XG. Entransy flux of thermal radiation and its application to enclosures with opaque surfaces. Int J Heat Mass Transfer 2011; 54: 269-78. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.08.026

Cheng XT, Xu XH, Liang XG. Radiative entransy flux in enclosures with nonisothermal or non-grey, opaque, diffuse surfaces and its application. Sci China Tech Sci 2011; 54: 2446-56.

Cheng XT, Liang XG. Computation of effectiveness of twostream heat exchanger networks based on concepts of entropy generation, entransy dissipation and entransy24 dissipation-based thermal resistance. Energ Convers Manage 2012; 58: 163-70. http://dx.doi.org/10.1016/j.enconman.2012.01.016

Cheng XT, Xu XH, Liang XG. Application of entransy to optimization design for parallel thermal network of thermal control system in spacecraft. Sci China Tech Sci 2011; 54: 964-71.

Qian XD, Li Z, Li ZX. Entransy-dissipation-based thermal resistance analysis of heat exchanger networks. Chin Sci Bull 2011; 56: 3289-95. http://dx.doi.org/10.1007/s11434-011-4733-3

Cheng XT, Liang XG, Guo ZY. Entransy decrease principle of heat transfer in an isolated system. Chin Sci Bull 2011; 56: 847e54.

Cheng XT, Liang XG, Xu XH. Microscopic expression of entransy. Acta Phys Sin 2011; 60: 060512.

Xie ZH, Chen LG, Sun FR. Constructal optimization on Tshaped cavity based on entransy dissipation minimization. Chin Sci Bull 2009; 54: 4418-27. http://dx.doi.org/10.1007/s11434-009-0507-6

Xiao QH, Chen LG, Sun FR. Constructal entransy dissipation rate minimization for “disc-to-point” heat conduction Chin Sci Bull 2011; 56: 102-12. http://dx.doi.org/10.1007/s11434-010-4081-8

Wu J, Liang XG. Application of entransy dissipation extreme principle in radiative heat transfer optimization. Sci China Ser E-Tech Sci 2008; 51: 1306-14.

Xia SJ, Chen LG, Sun FR. Optimization for entransy dissipation minimization in heat exchanger. Chin Sci Bull 2009; 54: 3572-8. http://dx.doi.org/10.1007/s11434-009-0299-8

Li XF, Guo JF, Xu MT, Cheng L. Entransy dissipation minimization for optimization of heat exchanger design. Chin Sci Bull 2011; 56: 2174-8. http://dx.doi.org/10.1007/s11434-011-4489-9

Qian XD, Li ZX. Analysis of entransy dissipation in heat exchangers. Int J Thermal Sci 2011; 50: 608-14. http://dx.doi.org/10.1016/j.ijthermalsci.2010.11.004

Chen L, Wei S, Sun F. Constructal entransy dissipation rate minimization of a disc. Int J Heat Mass Transfer 2011; 54: 210-216. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.09.050

Chen L, Wei S, Sun F. Constructal entransy dissipation rate minimization of round tube heat exchanger cross-section. Int J Them Sci 2011; 50: 1285-1292. http://dx.doi.org/10.1016/j.ijthermalsci.2011.02.025

Wei SH, Chen LG, Sun FR. Constructal optimization of discrete and continuous-variable cross-section conducting path based on entransy dissipation rate minimization. Sci China-Technol Sci 2010; 53: 1666-1677.

Wei SH, Chen LG, Sun FR. Constructal entransy dissipation minimization for ‘volume-point’ heat conduction without the premise of optimized last order construct. Int J Exergy 2010; 7: 627-639. http://dx.doi.org/10.1504/IJEX.2010.034933

Xia SJ, Chen LG, Sun FR. Optimal paths for minimizing entransy dissipation during heat transfer processes with generalized radiative heat transfer law. Appl Math Model 2010; 34: 2242-2255. http://dx.doi.org/10.1016/j.apm.2009.10.033

Xiao QH, Chen LG, Sun FR. Constructal entransy dissipation rate minimization for a heat generating volume cooled by forced convection. Chin Sci Bull 2011; 56: 2966-2973. http://dx.doi.org/10.1007/s11434-011-4554-4

Xiao QH, Chen LG, Sun FR. Constructal entransy dissipation rate minimization for heat conduction based on a tapered element. Chin Sci Bull 2011; 56: 2400-2410.

Xiao QH, Chen LG, Sun FR. Constructal entransy dissipation rate minimization for umbrella-shaped assembly of cylindrical fins. Sci China-Technol Sci 2011; 54: 211-219.

Xie ZH, Chen LG, Sun FR. Constructal optimization for geometry of cavity by taking entransy dissipation minimization as objective. Sci China Ser E-Technol Sci 2009; 52: 3504-3513.

Xie ZH, Chen LG, Sun FR. Comparative study on constructal optimizations of T-shaped fin based on entransy dissipation rate minimization and maximum thermal resistance minimization. Sci China-Technol Sci 2011; 54: 1249-1258.

Baierlein R. Thermal Physics (Cambridge, Cambridge University Press) 1999. http://dx.doi.org/10.1017/CBO9780511840227

Ge Y, Chen L, Sun F, Wu C. Thermodynamic simulation of performance of an Otto cycle with heat transfer and variable specific heats for the working fluid. Int J Therm Sci 2005; 44: 506-511. http://dx.doi.org/10.1016/j.ijthermalsci.2004.10.001

Ge Y, Chen L, Sun F, Wu C. The effects of variable specificheats of the working fluid on the performance of an irreversible Otto cycle. Int J Exergy 2005; 2: 274-283. http://dx.doi.org/10.1504/IJEX.2005.007255

Chen L, Ge Y, Sun F, Wu C. Effects of heat transfer, friction and variable specific-heats of a working fluid on performance of an irreversible Dual cycle. Energy Convers Manage 2006; 47: 3224-3234. http://dx.doi.org/10.1016/j.enconman.2006.02.016

Al-Sarkhi A, Jaber JO, Abu-Qudais M, Probert SD. Effects of friction and temperature-dependent specific-heat of the working fluid on the performance of a Diesel-engine. Appl Energy 2006; 83: 153-165. http://dx.doi.org/10.1016/j.apenergy.2005.01.001

Ge Y, Chen L, Sun F. Finite- time thermodynamic modeling and analysis for an irreversible dual cycle. Math Comput Model 2009; 50: 101-108. http://dx.doi.org/10.1016/j.mcm.2009.04.009

Ge Y, Chen L, Sun F. Finite- time thermodynamic modeling and analysis for of an irreversible Diesel cycle. P I Mech Eng D-J Aut 2008; 222: 887-894.

Ge Y, Chen L, Sun F. Finite- time thermodynamic modeling and analysis for of an irreversible Otto- cycle. Appl Energy 2008; 85: 618-624. http://dx.doi.org/10.1016/j.apenergy.2007.09.008

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2013 Global Journal of Energy Technology Research Updates