Numerical Pattern of 3D Tornado Rise with Account for Mirror Asymmetry


Angular momentum
Mirror Asymmetry

How to Cite

Alexander Yu. Gubar, Victor N. Nikolaevskiy. Numerical Pattern of 3D Tornado Rise with Account for Mirror Asymmetry. Glob. J. Earth Sci. Eng. [Internet]. 2014 Sep. 30 [cited 2022 Jun. 30];1(1):4-17. Available from:


Authors are returning to the basic concepts of turbulence – homogeneity and symmetry principles. It is shown that the homogeneity in the sense of constant mean velocity gradient (instead of constant velocity) permits to introduce mirror asymmetry. This way is corresponding to stratified atmosphere and to differential volume in any continuum model. The basic ideas of A. N. Kolmogorov do not contradict to such an approach. Moreover, the use of the intrinsic eddy angular velocity (so-called spin or mesovorticity) as the internal thermodynamic parameter becomes necessary for adequate description of tornado (and intensive atmospheric vortices, in general) dynamics. The continuum description is formulated with standard introducing of stresses averaged over a cross-section, and now motivated asymmetry leads to the vortices moment of momentum balance. The set of nonlinear 3D partial differential equations is suggested for the problem of tornado generation from a cloud of initial vortices. The dependence of turbulent rotation viscosity on the spin permits to localize the tornado body due to the nonlinear diffusion effect. Numerical calculations are performed at two different clusters using Parjava program environment. The growth of typical tornado structure is shown by a sequence of pictures. A visual comparison with the Hurricane Isabel, 2003, is represented.


Selected Works of A.N. Kolmogorov: Volume I: Mathematics and Mechanics. V.M. Tikhomirov, Ed., Kluwer, Dordrecht, 1991.

Taylor G.I. Statistical Theory of Turbulence. Proc R Soc London Ser A 1935; 151: 421-478.

Schrodinger E. What is life? Cambridge Univ. Press, 1944.

Cosserat E. et F. Theorie des Corps Deformables. Herman, Paris, 1909.

Nikolaevskiy V.N. Angular Momentum in Geophysical Turbulence: Continuum Spatial Averaging Method. Kluwer, Dordrecht 2003.

Nikolaevskiy V.N. Asymmetrical Mechanics of Continua and Averaged Description of Turbulent Flows. Dokl Akad Nauk 1969; 184(6) 1304-1307 [in Russian

Mattioli G.D. Teoria Dinamica dei Regimi Fluidi Turbolenti. CEDAM, Pardova 1937.

Ferrari C. On the Differential Equations of Turbulent Flow. In: Continuum Mechanics and Related Problems of Analysis, Nauka, Moscow 1972; pp. 555-566.

Heinloo J. Setup of turbulence mechanics accounting for a preferred orientation of eddy rotation // Concepts of Physics 2008; 5: 205-219.

Eringen A.C., Chang T.S. A Micropolar Description of Hydrodynamic Turbulence. In: Recent Advances in Engineering Science, Gordon & Breach, New York 1970; 5(2): 1-8.

Arsenyev S.A., Gubar A.Yu., Nikolaevskiy V.N. Self- Organization of Tornados and Hurricanes in Atmospheric Currents with Meso-Scale Eddies. Dokl Earth Sci 2004; 396(4): 588-593. [Doklady Akademii Nauk 2004; 396(4): 541-546

Arsenyev S.A., Babkin V.A., Gubar A.Yu., Nikolaevskiy V.N. Theory of Mesoscale Turbulence. Eddies of the Atmosphere and the Ocean. RCD, Moscow – Izhevsk, 2010. [in Russian

Arsen’ev S.A., Gubar A.Yu., Shelkovnikov V.N. Generation of Typhoons and Hurricanes by a Mesoscale Turbulence. Moscow Univ Phys Bull 2007; 62(2): 113-117. [Vestnik Moskovskogo Universiteta Fizika 2007; 62(2): 50-54

Gubar A.Yu., Avetisyan A.I., Babkova V.V. Tornado Rise: 3D Numerical Model in Mesoscale Turbulence Theory of Nikolaevskiy. Dokl Earth Sci 2008; 419(2): 467-472. [Doklady Akademii Nauk 2004; 419(4): 547-552

Avetisyan A.I., Babkova V.V., Gaissaryan S.S., Gubar’ A.Yu. Development of Parallel Software for Resolving the 3D Task about the Origin of the Tornado According to the Nikolaevskii Theory. Math Models Comput Simul 2009; 1(4): 482-492 [Matematicheskoe Modelirovanie 2008; 20(8): 28-40

Avetisyan A.I., Babkova V.V., Gaissaryan S.S., Gubar A.Yu. Intensive Atmospheric Vortices Modeling Using High Performance Cluster Systems. LNCS 2007; 4671: 487-495. doi:10.1007/978-3-540-73940-1_48

Fujita T.T. The Lubbock tornadoes: A Study of Suction Spots. Weatherwise 1970; 23(4): 161-173.

Agee E.M., Church C., Morris C., Snow J. Some synoptic aspects and dynamic features of vortices associated with the tornado outbreak of 3 April 1974. Mon Wea Rev 1975; 103: 318-333.<0318:SSAADF>2.0.CO;2

Agee E.M., Snow J.T., Nickerson F.S., Clare P.R., Church C.R., Schaal L.A. An Observational Study of the West Lafayette, Indiana, Tornado of 20 March 1976. Mon Wea Rev 1977; 105: 893-907.<0893:AOSOTW>2.0.CO;2

Pauley R.L., Snow J.T. On the Kinematics and Dynamics of the 18 July 1986 Minneapolis Tornado. Mon Wea Rev 1988; 116: 2731-2736. 0493(1988)116<2731:OTKADO>2.0.CO;2

Rotunno R. Numerical Simulation of a Laboratory Vortex. J Atmos Sci 1977; 34: 1942-1956.<1942:NSOALV>2.0.CO;2

Church C.R., Snow J.T. Laboratory Models of Tornadoes. In: Church C., Burgess D., Doswell C., Davies-Jone R., Eds., The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Am. Geophys. Union, Washington, D.C., 1993; pp. 19-39. doi:10.1029/GM079p0277

Wurman J. The Multiple-Vortex Structure of a Tornado. Wea. Forecasting 2002; 17: 473-505.<0473:TMVSOA>2.0.CO;2

Montgomery M.T., Vladimirov V.A., Denisenko P.V. An Experimental Study on Hurricane Mesovortices. J Fluid Mech 2002; 471: 1-32.

Bell M.M. & Montgomery M.T. Observed Structure, Evolution, and Potential Intensity of Category 5 Hurricane Isabel (2003) from 12 to 14 September. Mon Wea Rev 2008; 136: 2023- 2046.

Kossin J.P., Schubert W.H. Mesovortices in Hurricane Isabel. Bull Am Meteorol Soc 2004; 85: 151-153.

Poincare H. Theorie des Tourbillions. Carré et Naud, Paris. 1893.

Batchelor G.K. An introduction to fluid dynamics, Cambridge University Press, 1967, 1973, 2000, First Cambridge Mathematical Library edition 2000 Reprinted 2001, 2002. XVIII, 615 p. — ISBN 0 521 66396 2 (paperback).

Brode H.L. Review of Nuclear Weapon Effects. Annu Rev Nucl Sci 1968; 18: 153-202.

Obukhov A.M. Turbulence for Atmospheric Dynamics. Center for Turb. Res., Palo Alto, Calif., 2001.

Iovieno M., Tordella D. The Angular Momentum Equation for a Finite Element of a Fluid: A New Representation and Application to Turbulent Modeling. Phys Fluids 2002; 14(8): 2673-2682.

Iskenderov D.Sh, Nikolaevskiy V.N. Laminar Core of Atmospheric Turbulent Eddies. Dokl Akad Nauk 1991; 319(1): 124-128. [in Russian

Fletcher C.A.J. Computational Techniques for Fluid Dynamics. Vol. II: Specific Techniques for Different Flow Categories. Springer-Verlag, Berlin 1988.

Ivannikov V.P., Gaissaryan S.S., Avetisyan A.I., Padaryan V. A. Improving Properties of a Parallel Program in ParJava Environment, LNCS 2003; 2840: 491–494.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2014 Alexander Yu. Gubar, Victor N. Nikolaevskiy