Determination of Pressure-Temperature Conditions of Retrograde Symplectic Assemblages in Granulites and Amphibolites
PDF

Keywords

Amphibolite
disequilibrium
geobarometer
geothermometer
granulite.

How to Cite

1.
Chun-Ming Wu, Jun-Sheng Lu, Guo-Dong Wang. Determination of Pressure-Temperature Conditions of Retrograde Symplectic Assemblages in Granulites and Amphibolites. Glob. J. Earth Sci. Eng. [Internet]. 2015 Jan. 15 [cited 2022 Jul. 3];1(2):71-83. Available from: https://www.avantipublishers.com/index.php/gjese/article/view/209

Abstract

Symplectites form during post-orogenic fast uplift processes in orogenic belts, and retrograde Symplectic assemblages mainly consist of plagioclase + quartz ± orthopyroxene ± clinopyroxene in mafic granulites or plagioclase + hornblende + quartz ± biotite in amphibolites, usually rimming relict garnet porphyroblasts. Such Symplectic assemblages resulted from retrograde reactions between garnet and other peak-metamorphic minerals by nearly isothermal decompression (ITD), so the Symplectic mineral assemblages could not be at equilibrium with the relict garnet rims and thus the so-called “local equilibrium†between garnet rims and the Symplectic assemblages does not exist. Thus, the P-T conditions of the Symplectic assemblages are best determined using only the Symplectic mineral compositions. This is best accomplished using garnet-free thermobarometers, i.e., two-pyroxene or hornblendeplagioclase thermometer in combination with the hornblende-plagioclase-quartz or applying the clinopyroxeneplagioclase-quartz geobarometer to minerals within the symplectites. Taking two mafic granulite samples and two amphibolite samples as examples, reasonable ITD P-T paths from the metamorphic peaks to retrogression stages have been derived, but P-T paths obtained using the relict garnet rims and the Symplectic minerals gave anomalous results. These examples demonstrate that the P-T conditions of the retrograde Symplectic assemblages cannot be estimated using chemical compositions of the decomposed, relict garnet rims in this case.

https://doi.org/10.15377/2409-5710.2014.01.02.3
PDF

References

Ernst WG. Tectonic history of subduction zones inferred from retrograde blueschist P-T paths. Geology 1988; 16: 1081- 1084. http://dx.doi.org/10.1130/0091-7613(1988)016<1081:THOSZI>2.3.CO;2

Harley SL. The origins of granulites: a metamorphic perspective. Geological Magazine 1989; 126: 215-247. http://dx.doi.org/10.1017/S0016756800022330

Brown M. P-T-t evolution of orogenic belts and the causes of regional metamorphism. Journal of the Geological Society. London 1993; 150: 227-241.

Spear FS. Metamorphic phase equilibria and metamorphic pressure- temperature-time paths (Second edition). Washington DC: Mineralogical Society of America 1995; 799 pages.

Selverstone J. Petrologic constraints on imbrication, metamorphism and uplift in the SW Tauern Window. Eastern Alps Tectonics 1985; 4: 687-704. http://dx.doi.org/10.1029/TC004i007p00687

Liu SW. P-T path of granulites in the Fuping area. Geological Journal of China Universities 1996; 2: 75-84. (in Chinese)

Zhao GC, Cawood PA, Wilde SA, Lu LZ. High-pressure granulites (retrograded eclogites) from the Hengshan Complex, North China Craton: petrology and tectonic implications. Journal of Petrology 2001; 42: 1141-1170. http://dx.doi.org/10.1093/petrology/42.6.1141

Guo JH, O'Brien PJ, Zhai MG. High-pressure granulites in the Sanggan area. North China craton: metamorphic evolution, P-T paths and geotectonic significance. Journal of Metamorphic Geology 2002; 20: 741-756. http://dx.doi.org/10.1046/j.1525-1314.2002.00401.x

Xiao LL, Wu CM, Zhao GC, Guo JH, Ren LD. Metamorphic P-T paths of the Zanhuang amphibolites and metapelites: constraints on the tectonic evolution of the Paleoproterozoic Trans-North China Orogen. International Journal of Earth Sciences 2011; 100: 717-739. http://dx.doi.org/10.1046/j.1525-1314.2002.00401.x

Wakabayashi J. Counterclockwise P-T-t paths from Franciscan Complex amphibolites, California: metamorphic evolution in a subduction zone. Geological Society of America Abstract with Programs 1988; 20: 240-241.

Jin W, Li SX, Liu XS. The metamorphic dynamics of early Precambrian high-grade metamorphic rocks series in Daqing-Ulashan area, Inner Monglia. Acta Petrologica Sinica 1991; 7: 27-35.(in Chinese with English abstract)

Wu ML, Zhao GC, Sun M, Yin CQ, Li SZ, Tam PY. Petrology and P-T path of the Yishui mafic granulites: Implications for tectonothermal evolution of the Western Shandong Complex in the Eastern Block of the North China Craton. Precambrian Research 2012; 222-223: 312–324. http://dx.doi.org/10.1016/j.precamres.2011.08.008

Abati J, Arenas R, Catalán JRM, García FD. Anticlockwise P-T path of granulites from the Monte Castelo Gabbro (Órdenes Complex, NW Spain). Journal of Petrology 2003; 44: 305-327. http://dx.doi.org/10.1093/petrology/44.2.305

Clarke GL, Fitzherbert JA, Milan LA, Daczko NR, Degeling HS. Anti-clockwise P-T paths in the lower crust: an example from a kyanite-bearing regional aureole, George Sound, New Zealand. Journal of Metamorphic Geology 2010; 28: 77-96. http://dx.doi.org/10.1111/j.1525-1314.2009.00854.x

Bohlen SR. Pressure-temperature-time paths and a tectonic model for the evolution of granulites. Journal of Geology 1987; 95: 617-632. http://dx.doi.org/10.1086/629159

Brandt S, Will TM, Klemd R. Magmatic loading in the proterozoic Epupa Complex, NW Namibia, as evidenced by ultrahigh-temperature sapphirine-bearing orthopyroxenesillimanite- quartz granulites. Precambrian Research 2007; 153: 143-178. http://dx.doi.org/10.1016/j.precamres.2006.11.016

Spear FS. The Gibbs method and Duhem's theorem: The quantitative relationships among P.T. chemical potential, phase composition and reaction progress in igneous and metamorphic systems. Contributions to Mineralogy and Petrology 1988; 99: 249-256. http://dx.doi.org/10.1007/BF00371465

Spear FS, Menard T. Program GIBBS: A generalized Gibbs method algorithm. American Mineralogist 1989; 74: 942-943.

Powell R, Holland T, Worley B. Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. Journal of Metamorphic Geology 1998; 16: 577-588. http://dx.doi.org/10.1111/j.1525-1314.1998.00157.x

Connolly JAD. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters 2005; 236: 524-541. http://dx.doi.org/10.1016/j.epsl.2005.04.033

Gaidies F, de Capitani C, Abart R. THERIA_G: a software program to numerically model prograde garnet growth. Contributions to Mineralogy and Petrology 2008a; 155: 657- 671. http://dx.doi.org/10.1007/s00410-007-0263-z

Spear FS, Hickmott DD, Selverstone J. Metamorphic consequences of thrust emplacement, Fall Mountain, New Hampshire. Geological Society of America Bulletin 1990; 102: 1344-1360. http://dx.doi.org/10.1130/0016-7606(1990)102<1344:MCOTEF>2.3.CO;2

Wei CJ, Powell R, Zhang LF. Eclogites from the south Tianshan, NW China: petrologic characteristic and calculated mineral equilibria in the Na2O-CaO-FeO-MgO-Al2O3-SiO2- H2O system. Journal of Metamorphic Geology 2003; 21: 163- 179. http://dx.doi.org/10.1046/j.1525-1314.2003.00435.x

Wei CJ, Powell R. Calculated phase relations in highpressure metapelites in the system NKFMASH (Na2O-K2OFeO- MgO-Al2O3-SiO2-H2O) with application to natural rocks. Journal of Petrology 2004; 44: 183-202. http://dx.doi.org/10.1093/petrology/egg085

Štípská P, Powell R. Constraining the P-T path of a MORBtype eclogite using pseudosections, garnet zoning and garnet-clinopyroxene thermometry: an example from the Bohemian Massif. Journal of Metamorphic Geology 2005; 23: 725-743. http://dx.doi.org/10.1111/j.1525-1314.2005.00607.x

Yang JJ, Powell R. Calculated phase relations in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O with applications to UHP eclogites and whiteschists. Journal of Petrology 2006; 47: 2047-2071. http://dx.doi.org/10.1093/petrology/egl036

Gaidies F, de Capitani C, Abart R, Schuster R. Prograde garnet growth along complex P-T-t paths: results from numerical experiments on polyphase garnet from the Wo¨lz Complex (Austroalpine basement). Contributions to Mineralogy and Petrology 2008b; 155: 673-688. http://dx.doi.org/10.1007/s00410-007-0264-y

Liu XC, Hua JM, Zhao Y, Lou YX, Wei CJ, Liu XH. Late Neoproterozoic/Cambrian high–pressure mafic granulites from the Grove Mountains, East Antarctica: P-T-t path, collisional orogeny and implications for assembly of East Gondwana. Precambrian Research 2009; 174: 181-199. http://dx.doi.org/10.1016/j.precamres.2009.07.001

Nasipuri P,?Bhattacharya A, Das S. Metamorphic reactions in dry and aluminous granulites: a Perple_X P-T pseudosection analysis of the influence of effective reaction volume. Contributions to Mineralogy and Petrology 2009; 157: 301-311. http://dx.doi.org/10.1007/s00410-008-0335-8

Dutch RA, Hand M, Kelsey DE. Unravelling the tectonothermal evolution of reworked Archean granulite facies metapelites using in situ geochronology: an example from the Gawler Craton, Australia. Journal of Metamorphic Geology 2010; 28: 293-316. http://dx.doi.org/10.1111/j.1525-1314.2010.00867.x

Wei CJ, Li YJ, Yu Y, Zhang JS. Phase equilibria and metamorphic evolution of glaucophane-bearing UHP eclogites from the Western Dabieshan Terrane, Central China. Journal of Metamorphic Geology 2010; 28: 647-666. http://dx.doi.org/10.1111/j.1525-1314.2010.00884.x

Brandt S, Schenk V, Raith M., Appel P, Gerdes A, Srikantappa C. Late Neoproterozoic P-T evolution of HPUHT granulites from the Palni Hills (South India): New constraints from phase diagram modelling, LA-ICP-MS zircon dating and in-situ EMP monazite dating. Journal of Petrology 2011; 52: 1813-1856. http://dx.doi.org/10.1093/petrology/egr032

Johnson TE, White RW. Phase equilibrium constraints on conditions of granulite-facies metamorphism at Scourie, NW Scotland. Journal of the Geological Society, London 2011; 168: 147-158. http://dx.doi.org/10.1144/0016-76492010-069

Wei CJ, Clarke GL. Calculated phase equilibria for MORB compositions: a reappraisal of the metamorphic evolution of lawsonite eclogite. Journal of Metamorphic Geology 2011; 29: 939-952. http://dx.doi.org/10.1111/j.1525-1314.2011.00948.x

White RW, Powell R. On the interpretation of retrograde reaction textures in granulite facies rocks. Journal of Metamorphic Geology 2011; 29: 131-149. http://dx.doi.org/10.1111/j.1525-1314.2010.00905.x

Whitney DL, Teyssier C, Toraman E, Seaton NCA, Fayon AK. Metamorphic and tectonic evolution of a structurally continuous blueschist-to-Barrovian terrane, Sivrihisar Massif, Turkey. Journal of Metamorphic Geology 2011; 29: 193-212. http://dx.doi.org/10.1111/j.1525-1314.2010.00915.x

Guo JH, Peng P, Chen Y, Jiao SJ, Windley BF. UHT sapphirine granulite metamorphism at 1.93–1.92 Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research 2012; 222-223: 124-142. http://dx.doi.org/10.1016/j.precamres.2011.07.020

Harley SL. Garnet-orthopyroxene bearing granulites from Enderby Land, Antarctica: metamorphic pressuretemperature- time evolution of the Archaean Napier Complex. Journal of Petrology 1985; 26: 819-856. http://dx.doi.org/10.1093/petrology/26.4.819

Harley SL. Proterozoic granulites from the Rauer Group, east Antarctica. I. Decompressional pressure-temperature paths deduced from mafic and felsic gneisses. Journal of Petrology 1988; 29: 1059-1095. http://dx.doi.org/10.1093/petrology/29.5.1059

St-Onge MR. Zoned poikiloblastic garnets: P-T paths and syn-metamorphic uplift through 30 km of structural depth, Wopmay Orogen, Canada. Journal of Petrology 1987; 28: 1- 21. http://dx.doi.org/10.1093/petrology/28.1.1

Carswell DA, O'Brien PJ. Thermobarometry and geotectonic significance of high-pressure granulites: examples from the Moldanubian zone of the Bohemian Massif in Lower Austria. Journal of Petrology 1993; 34: 427-459. http://dx.doi.org/10.1093/petrology/34.3.427

Liu XS, Jin W, Li SX, Xu XC. Two types of Precambrian highgrade metamorphism, Inner Mongolia, China. Journal of Metamorphic Geology 1993; 11: 499-510. http://dx.doi.org/10.1111/j.1525-1314.1993.tb00167.x

Zhai MG, Guo JH, Li JH, Li YG, Yan YH, Zhang WH. Retrograded eclogites in the Archaean North China Craton and their geological implication. Chinese Science Bulletin1996; 41: 315-320.

Gao J, Klemd R, Zhang L. P-T path of high pressure-low temperature rocks and tectonic implications in the western Tianshan Mountains (NW China). Journal of Metamorphic Geology 1999; 17: 621-636. http://dx.doi.org/10.1046/j.1525-1314.1999.00219.x

Zhao GC, Cawood PA, Lu LZ. Petrology and P-T history of the Wutai amphibolitic gneisses: Implications for tectonic evolution of the Wutai Complex, China. Precambrian Research 1999; 93: 181-199. http://dx.doi.org/10.1016/S0301-9268(98)00090-4

Nowlan EU, Schert H-P, Schreyer W. Garnet-omphacitephengite thermobarometry of eclogites from the coesite– bearing unit of the southern Dora-Maira Massif, Western Alps. Lithos 2000; 52: 197-214. http://dx.doi.org/10.1016/S0024-4937(99)00091-2

Zhao GC, Wilde SA, Cawood PA, Lu LZ. Petrology and P-T path of the Fuping mafic granulites: implications for tectonic evolution of the central zone of the North China craton. Journal of Metamorphic Geology2000; 18: 375-391. http://dx.doi.org/10.1046/j.1525-1314.2000.00264.x

Lee SR, Cho M. Metamorphic and tectonic evolution of the Hwacheon Granulite Complex, central Korea: composite P-T path resulting from two distinct crustal-thickening events. Journal of Petrology 2003; 44: 197-226. http://dx.doi.org/10.1093/petrology/44.2.197

Marschall HR, Kalt A, Hanel M. P–T evolution of a Variscan lower-crustal segment: a study of granulites from the Schwarzwald, Germany. Journal of Petrology 2003; 44: 227- 253. http://dx.doi.org/10.1093/petrology/44.2.227

Liu FL, Xu ZQ, Liou JG. Tracing the boundary between UHP and HP metamorphic belts in the southwestern Sulu terrane, eastern China: evidence from mineral inclusions in zircons from metamorphic rocks. International Geology Review 2004; 46: 409-425. http://dx.doi.org/10.2747/0020-6814.46.5.409

Chen Y, Ye K, Liu JB, Sun M. Multistage metamorphism of the Huangtuling granulite, Northern Dabie Orogen, eastern China: implications for the tectonometamorphic evolution of subducted lower continental crust. Journal of Metamorphic Geology 2006; 24: 633-654. http://dx.doi.org/10.1111/j.1525-1314.2006.00659.x

Liu JB, Ye K, Sun M. Exhumation P-T path of UHP eclogites in the Hong'an area, western Dabie Mountains, China. Lithos 2006; 89: 154-173. http://dx.doi.org/10.1016/j.lithos.2005.12.002

Jessup MJ, Cottle JM, Searle MP, Law RD, Newell DL, Tracy RJ, Waters DJ. P-T-t-D paths of Everest Series schist, Nepal. Journal of Metamorphic Geology 2008; 26: 717-739. http://dx.doi.org/10.1111/j.1525-1314.2008.00784.x

Ye K, Song YR, Chen Y, Xu HJ, Liu JB, Sun M. Multistage metamorphism of orogenic garnet-lherzolite from Zhimafang, Sulu UHP terrane, E. China: Implications for mantle wedge convection during progressive oceanic and continental subduction. Lithos 2009; 109: 155-175. http://dx.doi.org/10.1016/j.lithos.2008.08.005

Liu WJ, Zhai MG, Li YG. Metamorphism of the high-pressure basic granulites in Laixi, eastern Shandong, China. Acta Petrologica Sinica 1998; 14: 449-459. (in Chinese with English abstract)

Wang F, Liu FL, Liu PH, Liu JH. Metamorphic evolution of Early Precambrian khondalite series in North Shandong Province. Acta Petrologica Sinica 2010; 26: 2057-2072. (in Chinese with English abstract).

Ma J, Wang RM. Reviews in garnet-clinopyroxene geothermometers and geobarometers with their application to granulite: the comparison of Miyun (Zunhua) and Xuanhua granulite forming conditions. In: Qian XL, Wang RM (eds.) Geological Evolution of the Granulite Terrane in North Part of the North China Craton. Seismological Press, Beijing 1994; pp. 71-88. (in Chinese with English abstract)

O’Brien PJ, Walte N, Li JH. The petrology of two distinct granulite types in the Hengshan Mts, China, and tectonic implications. Journal of Asian Earth Sciences 2005; 24: 615- 627. http://dx.doi.org/10.1016/j.jseaes.2004.01.002

Green DH, Ringwood AE. An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochimica et Cosmochimica Acta 1967; 31: 767-833. http://dx.doi.org/10.1016/S0016-7037(67)80031-0

Cooke RA, O’Brien PJ. Resolving the relationship between high P-T rocks and gneisses in collisional terranes: an example from the Gföhl gneiss–granulite association in the Moldanubian Zone, Austria. Lithos 2001; 58: 33-54. http://dx.doi.org/10.1016/S0024-4937(01)00049-4

Boullier A-M, Barbey P. A polycyclic two-stage corona growth in the Iforas Granulitic Unit (Mali). Journal of Metamorphic Geology 1988; 6: 235-254. http://dx.doi.org/10.1111/j.1525-1314.1988.tb00417.x

Sandiford M, Powell R Martin SF, Perera LRK. Thermal and baric evolution of garnet granulites from Sri Lanka. Journal of Metamorphic Geology 1988; 6: 351-364. http://dx.doi.org/10.1111/j.1525-1314.1988.tb00425.x

Mengel F, Rivers T. Decompression reactions and P-T conditions in high-grade rocks, northern Labrador: P-T-t paths from individual samples and implications for early Proterozoic tectonic evolution. Journal of Petrology 1991; 32: 139-167. http://dx.doi.org/10.1093/petrology/32.1.139

Kumar GRR, Chacko T. Geothermobarometry of mafic granulites and metapelite from the Palghat Gap, South India: petrological evidence for isothermal uplift and rapid cooling. Journal of Metamorphic Geology 1994; 12: 479-492. http://dx.doi.org/10.1111/j.1525-1314.1994.tb00037.x

Owen JV, Dostal J. Contrasting corona structures in mafic granulite from the Blansky Les complex, Bohemian massif, Czech Republic. Canadian Mineralogist 1996; 34: 959-966.

Baba S. Proterozoic anticlockwise P-T path of the Lewisian Complex of South Harris, Outer Hebrides, NW Scotland. Journal of Metamorphic Geology 1998; 16: 819-841. http://dx.doi.org/10.1111/j.1525-1314.1998.00163.x

Galán G, Marcos A. The metamorphic evolution of the high pressure mafic granulites of the Bacariza Formation Zcabo Ortegal Complex, Hercynian belt, NW Spain. Lithos 2000; 54: 139-171. http://dx.doi.org/10.1016/S0024-4937(00)00020-7

Hölttä P, Paavola J. P-T-t development of Archaean granulites in Varpaisjärvi, Central Finland. I. Effects of multiple metamorphism on the reaction history of mafic rocks. Lithos 2000; 50: 97-120. http://dx.doi.org/10.1016/S0024-4937(99)00056-0

Bendaoud A, Ouzegane K, Kienast J-R. Textures and phase relationships in ferrous granulites from Tidjenouine (Hoggar, Algeria): fayalite–ferrossilite–quartz secondary assemblage. Journal of African Earth Sciences 2003; 37: 241-255. http://dx.doi.org/10.1016/j.jafrearsci.2003.05.005

Bhowmik SK, Roy A. Garnetiferous Metabasites from the Sausar Mobile Belt: Petrology, P-T Path and Implications for the Tectonothermal Evolution of the Central Indian Tectonic Zone. Journal of Petrology 2003; 44: 387-420. http://dx.doi.org/10.1093/petrology/44.3.387

Elvevold S, Thrane K, Gilotti JA. Metamorphic history of highpressure granulites in Payer Land, Greenland Caledonides. Journal of Metamorphic Geology 2003; 21: 49-63. http://dx.doi.org/10.1046/j.1525-1314.2003.00419.x

Azimov PY, Bushmin SA. P-T history of the HT/HP granulite metamorphism associated with thrusting in a junction zone between the Porya Guba and Umba blocks, Lapland Granulite Belt (Northeastern Baltic Shield). Doklady Earth Sciences 2009; 425: 373-397. http://dx.doi.org/10.1134/S1028334X09030106

Gross AOMS, Droop GTR, Porcher CC, Fernandes LAD. Petrology and thermobarometry of mafic granulites and migmatites from the Chafalote Metamorphic Suite: New insights into the Neoproterozoic P–T evolution of the Uruguayan–Sul-Rio-Grandense shield. Precambrian Research 2009; 170: 157-174. http://dx.doi.org/10.1016/j.precamres.2009.01.011

Prakash D, Prakash S, Sachan HK. Petrological evolution of the high pressure and ultrahigh-temperature mafic granulites from Karur, southern India: evidence for decompressive and cooling retrograde trajectories. Mineralogy and Petrology 2010; 100: 35-53. http://dx.doi.org/10.1007/s00710-010-0123-9

Janák M, O’Brien PJ, Hurai V, Reutel C. Metamorphic evolution and fluid composition of garnet-clinopyroxene amphibolites from the Tatra Mountains, Western Carpathians. Lithos 1996; 39: 57-79. http://dx.doi.org/10.1016/S0024-4937(96)00019-9

Zhang ZJ. Metamorphic evolution of garnet–clinopyroxene– amphibole rocks from the Proterozoic Songshugou mafic– ultramafic complex, Qinling Mountains, central China. The Island Arc 1999; 8: 259-280. http://dx.doi.org/10.1046/j.1440-1738.1999.00236.x

Shervais JW, Dennis AJ, McGee JJ, Secor D. Deep in the heart of Dixie: Pre-Alleghanian eclogite and HP granulite metamorphism in the Carolina Terrane, South Carolina, USA. Journal of Metamorphic Geology 2003; 21: 65-80. http://dx.doi.org/10.1046/j.1525-1314.2003.00416.x

Storey CD, Brewer TS, Temperley S. P-T conditions of Grenville-age eclogite facies metamorphism and amphibolite facies retrogression of the Glenelg–Attadale Inlier, NW Scotland. Geological Magazine 2005; 142: 605-615. http://dx.doi.org/10.1017/S001675680500110X

Kim SW, Oh CW, Williams IS, Rubatto D, Ryu I-C, Rajesh VJ, et al. Phanerozoic high-pressure eclogite and intermediate-pressure granulite facies metamorphism in the Gyeonggi Massif, South Korea: implications for the eastward extension of the Dabie–Sulu continental collision zone. Lithos 2006; 92: 357-377. http://dx.doi.org/10.1016/j.lithos.2006.03.050

Mohammad YO, Cornell DH, Danielsson E, Hegardt EA, Anczkiewicz R. Mg-rich staurolite and kyanite inclusions in metabasic garnet amphibolite from the Swedish Eastern Segment: evidence for a Mesoproterozoic subduction event. European Journal of Mineralogy 2011; 23: 609-631. http://dx.doi.org/10.1127/0935-1221/2011/0023-2128

Sommer H, Hauzenberger C, Kröner A, Muhongo S. Isothermal decompression history in the ‘‘Western Granulite” terrain, central Tanzania: Evidence from reaction textures and trapped fluids in metapelites. Journal of African Earth Sciences 2008; 51: 123-144. http://dx.doi.org/10.1016/j.jafrearsci.2008.01.003

Acquafredda P, Fornelli A, Paglionico A, Piccarreta G. Petrological evidence for crustal thickening and extension in the Serre granulite terrane (Calabria, southern Italy). Geological Magazine 2006; 143: 145-163. http://dx.doi.org/10.1017/S0016756805001482

Galli A, Le Bayon B, Schmidt MW, Burg J-P, Caddick MJ, Reusser E. Granulites and charnockites of the Gruf Complex: Evidence for Permian ultra-high temperature metamorphism in the Central Alps. Lithos 2011; 124: 17-45. http://dx.doi.org/10.1016/j.lithos.2010.08.003

Jöns N, Schenk V. The ultrahigh temperature granulites of southern Madagascar in a polymetamorphic context: implications for the amalgamation of the Gondwana supercontinent. European Journal of Mineralogy 2011; 23: 127-156. http://dx.doi.org/10.1127/0935-1221/2011/0023-2087

Nichols GT, Berry RF, Green DH. Internally consistent gahnitic spinel-cordierite-garnet equilibria in the FMASHZn system: geothermobarometry and applications. Contributions to Mineralogy and Petrology 1992; 111: 362-377. http://dx.doi.org/10.1007/BF00311197

Zhao GC, Wilde SA, Cawood PA, Lu LZ. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. International Geology Review 1998; 40: 706-721. http://dx.doi.org/10.1080/00206819809465233

Zhao GC, Sun M, Wilde SA, Li SZ. Neoarchaean to Palaeoproterozoic evolution of the North China Craton: key issues revisited. Journal of Petrology 2005; 136: 177-202.

Whitney DL, Evans BDW. Abbreviations for names of rockforming minerals. American Mineralogist 2010; 95: 185-187. http://dx.doi.org/10.2138/am.2010.3371

McCarthy TC, Patino Douce AE. Empirical calibration of the silica-Ca-tschermak's-anorthite (SCAn) geobarometer. Journal of Metamorphic Geology 1998; 16: 675-686. http://dx.doi.org/10.1111/j.1525-1314.1998.00164.x

Taylor WR. An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolites and garnet websterite. Neues Jahrbuch für Mineralogie Abhandlungen 1998; 172: 381-408.

Ravna EK. The garnet-clinopyroxene geothermometer-an updated calibration. Journal of Metamorphic Geology; 2000; 18: 211-219. http://dx.doi.org/10.1046/j.1525-1314.2000.00247.x

Eckert JO Jr, Newton RC, Kleppa OJ. The ΔH of reaction and recalibration of garnet-pyroxene-plagioclase-quartz geobarometers in the CMAS system by solution calorimetry. American Mineralogist 1991; 76: 148-160.

Holland TJB, Blundy JD. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology 1994;,116: 433-447. http://dx.doi.org/10.1007/BF00310910

Dale J, Holland T, Powell R. Hornblende-garnet-plagioclase thermobarometry: a natural assemblage calibration of the thermodynamics of hornblende. Contributions to Mineralogy and Petrology 2000; 140: 353-362. http://dx.doi.org/10.1007/s004100000187

Lal RK. Internally consistent recalibrations of mineral equilibria for geothermobarometry involving garnetorthopyroxene- plagioclase-quartz assemblages and their application to the South Indian granulites. Journal of Metamorphic Geology 1993; 11: 855-866. http://dx.doi.org/10.1111/j.1525-1314.1993.tb00195.x

Bhadra S, Bhattacharya A. The barometer tremolite + tschermakite + 2 albite = 2 pargasite + 8 quartz: constraints from experimental data at unit silica activity, with application to garnet–free natural assemblages. American Mineralogist 2007; 92: 491-502. http://dx.doi.org/10.2138/am.2007.2067

Droop GTR. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine 1987; 25: 431-435. http://dx.doi.org/10.1180/minmag.1987.051.361.10

Xiao LL, Wang GD, Wang H, Jiang ZS, Diwu CR and Wu CM. Zircon U-Pb geochronology of the Zanhuang metamorphic complex: reappraisal of the Paleoproterozoic amalgamation of the Trans-North China Orogen. Geological Magazine 2013; 150: 756-764. http://dx.doi.org/10.1017/S001675681300006X

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2015 Chun-Ming Wu, Jun-Sheng Lu, Guo-Dong Wang