Different Active Sites of LaCoO3 and LaMnO3 for CH4 Oxidation by Regulation of Precursor’s Ion Concentration

Authors

  • Saifei Wang Hebei University of Science and Technology, 26th Yuxiang Street, Shijiazhuang Hebei, 050018, China
  • Yiyuan Zhang Hebei University of Science and Technology, 26th Yuxiang Street, Shijiazhuang Hebei, 050018, China
  • Peiqi Chu Hebei University of Science and Technology, 26th Yuxiang Street, Shijiazhuang Hebei, 050018, China
  • Jie Liu Hebei University of Science and Technology, 26th Yuxiang Street, Shijiazhuang Hebei, 050018, China
  • Man Wang Hebei University of Science and Technology, 26th Yuxiang Street, Shijiazhuang Hebei, 050018, China
  • Peng Zhang Hebei NCPC Environment Protection & Research Co., Ltd, Shijiazhuang, Hebei, 050015, China
  • Erhong Duan Hebei University of Science and Technology, 26th Yuxiang Street, Shijiazhuang Hebei, 050018, China

DOI:

https://doi.org/10.15377/2410-3624.2020.07.2

Keywords:

Perovskite, Methane oxidation, Active sites, DFT simulation.

Abstract

 Pure LaCoO3 and LaMnO3 were synthesized under different ion concentrations of precursors and the difference of active sites for CH4 oxidation between them was found. As the ion concentration of precursors increased, the two kind of perovskite crystals grew larger along with agglomerate. Meanwhile, LaCoO3 and LaMnO3 prepared by high ion concentrations of precursors enriched more surface Co3+ or Mn4+. The catalytic activity of the catalysts was tested in the oxidation reaction of methane under fuel-lean condition, results showed that LC-1.0 and LM-2.0 had the optimal activity and the light-off temperatures were 492°C and 486°C, respectively. Combining the physical and chemical characterization, the LaCoO3 and LaMnO3 possess different active sites for the methane catalytic reaction, and the conclusion was further verified by the DFT simulation. For LaCoO3, the surface lattice oxygen is the main active site, while for LaMnO3, the reaction is facilitated by the high-valent manganese.

Author Biographies

Saifei Wang, Hebei University of Science and Technology, 26th Yuxiang Street, Shijiazhuang Hebei, 050018, China

School of Environmental Science and Engineering

Yiyuan Zhang, Hebei University of Science and Technology, 26th Yuxiang Street, Shijiazhuang Hebei, 050018, China

School of Environmental Science and Engineering

Peiqi Chu, Hebei University of Science and Technology, 26th Yuxiang Street, Shijiazhuang Hebei, 050018, China

School of Environmental Science and Engineering

Jie Liu, Hebei University of Science and Technology, 26th Yuxiang Street, Shijiazhuang Hebei, 050018, China

School of Environmental Science and Engineering

Man Wang, Hebei University of Science and Technology, 26th Yuxiang Street, Shijiazhuang Hebei, 050018, China

School of Environmental Science and Engineering

Erhong Duan, Hebei University of Science and Technology, 26th Yuxiang Street, Shijiazhuang Hebei, 050018, China

School of Environmental Science and Engineering

References

Wang C, Yang S, Li X. Simulation of the hazard arising from the coupling of gas explosions and spontaneously combustible coal due to the gas drainage of a gob. Proc Safety Environ Protec. 2018; 118: 296-306. https://doi.org/2018.06.028 0957-5820

Liu F, Sang Y, Ma H. Nickel oxide as an effective catalyst for catalytic combustion of methane. J Nat Gas Sci Eng. 2017; 41: 1-6. https://doi.org/10.1016/j.jngse.2017.02.025

Messaoudani Zl, Rigas F, Hamid MDB, Hassan CRC. Hazards, safety and knowledge gaps on hydrogen transmission via natural gas grid: A critical review. Int J Hydrogen Energy 2016; 41: 17511-17525. https://doi.org/10.1016/j.ijhydene.2016.07.171

Thiruvengadam A, Besch M, Padmanaban V, Pradhan S, Demirgok B. Natural gas vehicles in heavy-duty transportation-A review, Energy Policy 2018; 122: 253-259. https://doi.org/10.1016/j.enpol.2018.07.052

Jiang X, Mira D, Cluff DL. The combustion mitigation of methane as a non-CO2 greenhouse gas. Prog Energy Combust Sci. 2018; 66: 176-199. https://doi.org/10.1016/j.pecs.2016.06.002

Yang J, Guo Y. Nanostructured perovskite oxides as promising substitutes of noble metals catalysts for catalytic combustion of methane. Chinese Chemical Letters 2018; 29: 252-260. DOI: 10.1016/j.cclet.2017.09.013

Lei Y, Li W, Liu Q. Typical crystal face effects of different morphology ceria on the activity of Pd/CeO2 catalysts for lean methane combustion. Fuel 2018; 233: 10-20. https://doi.org/10.1016/j.fuel.2018.06.035

Okal J, Zawadzki M, Baranowska K. Methane combustion over bimetallic Ru-Re/γ-Al2O3 catalysts: Effect of Re and pretreatments. Appl Catal B. 2016; 194: 22-31. https://doi.org/10.1016/j.apcatb.2016.04.038

Hong E, Kim C, Lim DH. Catalytic methane combustion over Pd/ZrO2 catalysts: Effects of crystalline structure and textural properties. Appl Catal B. 2018; 232: 544-552. https://doi.org/10.1016/j.apcatb.2018.03.101

Chin YH, Buda C, Neurock M, Iglesia E. Consequences of metal-oxide interconversion for C-H bond activation during CH4 reactions on Pd catalysts. J Am Chem Soc. 2013; 135: 15425-15442. https://doi.org/10.1021/ja405004m

Liotta LF, Carlo G, Di Pantaleo G, Deganello G. Catalytic performance of Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite oxides for methane combustion: Influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture. Applied Catalysis B: Environmental, 2007; 70: 314-322. https://doi.org/10.1016/j.apcatb.2005.12.023

Yang Q, Liu G, Liu Y. Perovskite-Type Oxides as the Catalyst Precursors for Preparing Supported Metallic Nanocatalysts: A Review. Industrial & Engineering Chemistry Research. 2017; 57: 1-17. https://doi.org/10.1021/acs.iecr.7b03251

Zhu H, Zhang P, Dai S. Recent Advances of LanthanumBased Perovskite Oxides for Catalysis. ACS Catalysis 2015; 5: 6370-6385. https://doi.org/10.1021/acscatal.5b01667

Zhang D, Tan Q, Meng X, Weng ZW. Structural modification of LaCoO3 perovskite for oxidation reactions: The synergistic effect of Ca2+and Mg2+co-substitution on phase formation and catalytic performance. Applied Catalysis B: Environ.. 2015; 172: 18-26. http://dx.doi.org/10.1016/j.apcatb.2015.02.006

Arandiyan H. Methane Combustion over Lanthanum-based Perovskite Mixed Oxides. 2015; ISBN 978-3-662-46990-3. DOI: 10.1007/978-3-662-46991-0.10,16-17

Mishra A, Prasad R. Preparation and application of perovskite catalysts for diesel soot emissions control: an overview. Catalysis Reviews 2014; 56: 57-81. https://doi.org/10.1080/01614940.2014.866438

Wang J, Ren Y, Wang F, Zhang X, Liu Y, Guo GL. Nanocasted Synthesis of Mesoporous LaCoO3 Perovskite with Extremely High Surface Area and Excellent Activity in Methane Combustion. J Phys Chem C. 2008; 112: 15293-15298. https://doi.org/10.1021/jp8048394

Wang L. Ma. NO oxidative activity of mesoporous LaMnO3and LaCoO3perovskite nanoparticles by facile molten-salt synthesis. New J Chem. 2019; 43: 2974-2980. DOI: 10.1039/C8NJ04590A

Hou L, Zhang H, Dong L, Zhang L, Duprez D, Royer S. A simple non-aqueous route to nano-perovskite mixed oxides with improved catalytic properties. Catal. Today. 2017. 287: 30-36. https://doi.org/10.1016/j.cattod.2017.01.047

Spinicci R, Faticanti M, Marini P, De Rossi S, Porta P. Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion. Journal of Molecular Catalysis A: Chem .2003; 197: 147-155. https://doi.org/10.1016/S1381-1169(02)00621-0

Si W, Wang Y, Zhao S, Hu F, Li J. A Facile Method for in Situ Preparation of the MnO2/LaMnO3 Catalyst for the Removal of Toluene. Environ Sci Technol. 2016; 50: 4572-4578. https://doi.org/10.1021/acs.est.5b06255

Wang Y, Arandiyan H, Scott J, et al. High Performance Au– Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovskite Catalyst for Methane Combustion. ACS Catal. 2016; 6: 6935-6947. https://doi.org/10.1021/acscatal.6b01685

Campagnolia AE, Tavaresb LF, Rossettia I, et al. Effect of preparation method on activity and stability of LaMnO3 and LaCoO3 catalysts for the flameless combustion of methane. Appl Catal B. 2005; 55: 133-139. https://doi.org/10.1016/j.apcatb.2004.07.010

Zhu J, Sun X, Wang Y, et al. Solution-phase synthesis and characterization of perovskiteLaCoO3nanocrystals via a coprecipitation Route. J Rare Earths 2007; 25: 601-604. https://doi.org/10.1016/S1002-0721(07)60570-5 Gao Z, Wang R. Catalytic activity for methane combustion of the perovskite-type La1-xSrxCoO3-δ oxide prepared by the urea decomposition method. Applied Catalysis B: Environl. 2010; 98: 147-153. https://doi.org/10.1016/j.apcatb.2010.05.023

Natile M, Ugel E, Maccato C, Glisenti A. LaCoO3: effect of synthesis conditions on properties and reactivity. Applied Catalysis B: Environ. 2007; 72(3): 351-362. https://doi.org/10.1016/j.apcatb.2006.11.011

Arandiyan H, Chang H, Liu C, Peng Y, Li J. Dextrose-aided hydrothermal preparation with large surface area on 1D single-crystalline perovskite La0.5Sr0.5CoO3 nanowires without template: Highly catalytic activity for methane combustion. Journal of Molecular Catalysis A: Chem. 2013; 378: 299-306. https://doi.org/10.1016/j.molcata.2013.06.019

Ghiasi E, Malekzadeh A, Ghiasi M. Moderate concentration of citric acid for the formation of LaMnO3 and LaCoO3 nanoperovskites. J Rare Earths 2013; 31: 997-1002. https://doi.org/10.1016/S1002-0721(12)60393-7

Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater Phys. 1996; 54: 11169- 11186. https://doi.org/10.1103/physrevb.54.11169

Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals andsemiconductors using a planewave basis set. J Comput Mater Sci. 1996; 6: 15. DOI: https://doi.org/10.1016/0927-0256(96)00008-0

Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996; 77: 3865- 3868. https://doi.org/10.1103/physrevlett.77.3865

Navarro RM, Alvarez-Galvan MC, Villoria JA, et al. Effect of Ru on LaCoO3 perovskite-derived catalyst properties tested in oxidative reforming of diesel. Appl Catal B. 2007; 73: 247- 258. https://doi.org/10.1016/j.apcatb.2006.12.013

Hou L, Zhang H, Dong L, et al. A simple non-aqueous route to nano-perovskite mixed oxides with improved catalytic properties. Catal Today 2017; 287: 30-36. https://doi.org/10.1016/j.cattod.2017.01.047

Ren Q, Feng Z, Mo S, et al. 1D-Co3O4, 2D-Co3O4, 3D-Co3O4 for catalytic oxidation of toluene. Catal Today 2019; 332: 160-167. https://doi.org/10.1016/j.cattod.2018.06.053

Liu Y, Dai H, Deng J, et al. Controlled generation of uniform spherical LaMnO3, LaCoO3, Mn2O3, and Co3O4 nanoparticles and their high catalytic performance for carbon monoxide and toluene oxidation. Inorg Chem. 2013; 52: 8665-8676. https://doi.org/10.1021/ic400832h

Gao Z, Wang H, Ma H, Li Z. Preparation and characterization of the non-stoichiometric La-Mn perovskites. J Alloys Compd. 2015; 646: 73-79. https://doi.org/10.1016/j.jallcom.2015.06.044

Zhu J, Li H, Zhong L, et al. Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis. ACS Catal. 2014; 4: 2917-2940. https://doi.org/10.1021/cs500606g

Schmal M, Souza M, Alegre V, et al. Methane oxidation - effect of support, precursor and pretreatment conditions - in situ reaction XPS and DRIFT. Catal Today 2006; 118: 392- 401. https://doi.org/10.1016/j.cattod.2006.07.026

Wang Y, Arandiyan H, Scott J, et al. High Performance Au– Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovskite Catalyst for Methane Combustion. ACS Catal. 2016; 6: 6935-6947. https://doi.org/10.1021/acscatal.6b01685

Jodłowski PJ, Jedrzejczyk RJ, Chlebda D, Gierada M, Łojewska J. In situ spectroscopic studies of methane catalytic combustion over Co, Ce, and Pd mixed oxides deposited on a steel surface. J Catal. 2017; 350: 1-12. https://doi.org/10.1016/j.jcat.2017.03.022

Glisenti A, Vittadini A. On the Effects of Doping on the Catalytic Performance of (La,Sr)CoO3. A DFT Study of CO Oxidation. Catalysts 2019; 9: 312. https://doi.org/10.3390/catal9040312

Polo-Garzon F, Fung V, Liu X, et al. Understanding the Impact of Surface Reconstruction of Perovskite Catalysts on CH4 Activation and Combustion. ACS Catal. 2018; 8: 10306- 10315. https://doi.org/10.1021/acscatal.8b02307

Downloads

Published

2020-09-25

How to Cite

1.
Saifei Wang, Yiyuan Zhang, Peiqi Chu, Jie Liu, Man Wang, Peng Zhang, Erhong Duan. Different Active Sites of LaCoO3 and LaMnO3 for CH4 Oxidation by Regulation of Precursor’s Ion Concentration. Glob. Environ. Eng. [Internet]. 2020Sep.25 [cited 2021Sep.16];7(1):28-39. Available from: https://www.avantipublishers.com/jms/index.php/tgevnie/article/view/931

Issue

Section

Articles