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Abstract: Global temperature increases and precipitation changes are both expected to alter alpine ecosystem structure 
and processes. In this paper, we reviewed the recent climate changes observed and the global change researches on 
the Tibetan Plateau. Firstly, we found that the mean annual temperature and precipitation (data from 75 meteorological 
stations, where all daily precipitation data are available) have increased since 1971, there were 0.5˚C and 0.7˚C per 
decade increase in annual and winter temperature, respectively, on Tibetan Plateau, and changes in precipitation were 
found both less spatially and temporally consistent. Secondly, we reviewed the climate change researches on the 
Tibetan Plateau published between 2000 and 2019 mainly focused on plant growth and ecosystem carbon balance 
which including plant phenology, plant productivity, plant diversity, exchanges in ecosystem carbon and soil organic 
carbon. Findings and insights from these studies have been very useful to understand how the alpine ecosystem 
processes respond to climate change. However, the effects of temperature increase on plant growth and ecosystem 
carbon balance are differ depending on the study sites and warming methods and periods, and the effects of 
precipitation changes are sparse.  
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1. INTRODUCTION 

The Tibetan Plateau, covering an area of 2.5 million 

km
2
 with an average elevation of over 4000 m above 

sea level, is regarded as the third pole of the world and 

the highest unique territorial unit in the world [1-2]. The 

Plateau is characterized by monsoon climate with long, 

cool and dry winter and a relatively short, wet and 

humid summer [3]. Low temperatures and short 

growing seasons are considered to be important 

limiting factors controlling the ecosystem processes. 

According to the previous estimates, SOC (soil organic 

carbon) stock (4.4 Pg C) in alpine grasslands on the 

Tibetan Plateau accounts for 13.3% of China’s total 

SOC stock (32.9 Pg C) in the top 30cm depth [4]. Due 

to its unique climate and vegetation types and the large 

stocks of SOC, the Tibetan Plateau is considered to be 

particularly sensitive to global climate change [5] and 

has attracted a number of scientists to explore the 

feedback between ecosystem processes and climate 

change, which can substantially affect the global 

carbon budget [6].  

Since 1950s, some studies have studied climate 

change on the Tibetan Plateau based on observational  
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data from meteorological stations and remote sensing 

[3,7-9]. Tibetan Plateau is experiencing significantly 

climate warming and spatially heterogeneous preci- 

pitation changes as summarized in by Kang et al. [3]. 

The climate on the Qinghai-Tibet Plateau continues to 

warm [10]. Many studies attempt to explore the 

feedback between climate change and ecosystem 

structure and processes using field observations, 

manipulative experiments, models and large-scale 

remote sensing on the Tibetan Plateau [6,11]. The 

models used for future or large-scale assessments are 

built upon knowledge from field observation and 

manipulative experiments [12]. Until now, hundreds of 

global changes manipulate experiments have been 

conducted on the Tibetan Plateau [6,13]. Most of these 

studies found that climate warming has significantly 

changed alpine ecosystem structure and processes on 

the Tibetan Plateau. These changes include alteration 

in plant community phenology, structure, composition, 

litter decomposition rate, greenhouse gases emission 

and SOC stocks [14-22]. However, there are few 

studies on changes in precipitation or the interaction of 

warming and precipitation changes on ecosystem 

structure and processes on the Tibetan Plateau. Since 

the global change research conducted is non-

systematic and limited, it is difficult to find a consistent 

trend of alpine ecosystem structure and processes 

against the on-going climate change on the Tibetan 
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Plateau. In view of this, it is critical to synthesize the 

major findings from manipulative experiments that have 

examined the responses of alpine ecosystem structure 

and processes to climate change for future research 

projects.  

In this synthesis, we reviewed the climate changes 

and recent global change research findings of the past 

and ongoing global change research on the Tibetan 

Plateau and introduced our new climate research 

platform. The aim of this review was to (1) analyse the 

recent climate change characteristics of the Tibetan 

Plateau; (2) provide a comprehensive analysis of the 

past and ongoing global change researches on the 

Tibetan Plateau; (3) suggest future directions for global 

change researches on the Tibetan Plateau on the basis 

of synthesis. 

2.OBSERVED CHANGES IN CLIMATE ON THE 
TIBETAN PLATEAU 

2.1. Temperature 

Global mean temperature is predicted to increase 

by 1.8~4.0
o
C till the end of this century. The Tibetan 

Plateau has been reported to be an extremely sensitive 

region to global climate change and this region is pre- 

dicted to experience “much greater than average” in- 

creases in temperatures (1.3~6.9
o
C) in the future [23].  

Since 1950s, a number of meteorological stations 

have been established on the Tibetan Plateau. How- 

ever, previous studies showed inconsistent results due 

to the different time period or meteorological stations 

examined. During 1955-1996, the linear trends of mean 

annual temperature (MAT) and winter temperature 

(December-February) averaged over 97 meteorological 

stations on the Tibetan Plateau reached 0.016
o
C yr

-1 

and 0.032
o
C yr

-1
, respectively [7]. The MAT dataset 

from 90 meteorological stations on the Tibetan Plateau 

during 1960-2007 showed that MAT has increased by 

0.036
o
C yr

-1 
[24]. Based on the MAT dataset during 

1960-2006, Piao et al. [25] reported that the MAT has 

increased by ~0.03
o
C yr

-1 
on the Tibetan Plateau since 

1960. Summer warming and autumn warming have the 

same rate with mean annual warming. Winter warming 

(~0.05
o
C yr

-1
) has the higher rate than mean annual 

warming, but spring warming (~0.02
o
C yr

-1
) has the 

lowest rate.  

We reanalyzed MAT from 1971 to 2010 over 75 

meteorological stations across the Tibetan Plateau, and 

found that the MAT has increased by ~0.05
o
C yr

-1
 since 

1971, with the largest increasing rate of 0.07
o
C per 

year observed in winter (Fig. 1a and 1c). This is 

consistent with the results of regional modeling. Models 

indicated that temperatures are expected to increase to 

a significantly greater extent in the non-growing season 

than in the growing season, particularly at high alti- 

tudes [23]. 

2.2. Precipitation 

In contrast to the trend of temperature, changes in 

precipitation are less evident spatially consistent and 

there is a larger inter-annual variability [3]. Furthermore, 

precipitation has occurred in a more concentrated way 

on regional scale, which has increased in most regions 

and has reduced in a few regions during the same 

period on the Tibetan Plateau [3,7]. There is a slight 

increase in annual total precipitation on the Tibetan 

Plateau over the past several decades, but precipita- 

tions in spring and winter have increased significantly 

during 1960-2006 [25]. We analyzed data from 75 

meteorological stations and observed a significant 

increasing trend in averaged precipitation during 1971-

2010 (Fig. 1b). The Tibetan Plateau is experiencing 

more precipitation during both spring and summer 

(0.9~1.1mm per year). This is consistent with the view 

of Gautam et al. who explained the warming trend of 

the Himalayas from the perspective of aerosols, and 

pointed out that this trend can not only bring about 

changes in monsoon rainfall in the region, but also 

affect its hydrological cycle [26]. By contrast, there is 

less precipitation in autumn and winter on the Tibetan 

Plateau since 1971 (Fig.1d), which was inconsistent 

with the previous results indicated by Piao et al. [25]. 

3.MAJOR FINDINGS OF GLOBAL CHANGE 
RESEARCHES ON THE TIBETAN PLATEAU 

During recent decades several studies from field 

observation have been conducted to quantify the 

response of ecosystem processes on climate change 

on the Tibetan Plateau (Fig. 2, Table 1). Most of these 

studies studied on the ecological process of carbon 

dynamics and the large-scale spatial pattern of C 

sequestration across the vast plateau (Table 2) [6], 

including carbon storage and dynamics in permafrost 

regions of the Tibetan Plateau [27]. These studies 

mainly focused on: 

3.1. Phenological Responses 

Climate change has influenced the timing of stages 

of development of most plants in the temperate and 

cold regions [5,8,28,29]. For example, Yu et al. [29] 

reported that the onset of the growing season was 
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delayed since the mid-1990s based on the field 

observation, and probably due to the increase in winter 

temperatures, because winter warming could delay the 

fulfillment of the chilling requirement, which slows the 

dormancy breaking process. Differing from the 

assumption of Yu et al. [29], Shen [30] demonstrated 

that the effect of winter warming on the spring 

phenology does not follow a simple correlation and 

further analysis using a dataset of long-term is needed 

to address this effect. After analyzing the European 

phenology, Jochner et al. also found that changes in 

plant phenology cannot establish a perfect linear 

relationship with temperature [31]. Similarly, Chen et al. 

[32] suggested that the causes of the delay spring 

starting green time should include several factors such 

as thawing-freezing processes, climate changes, 

grassland degradation, and their combined effect rather 

than a single factor. Used satellite derived NDVI 

(Normalized Difference Vegetation Index) data, Piao et 

al. [8] found that the vegetation starting green time 

significantly advanced by 0.88 day year
 -1

 from 1982 to 

1999, but significantly delayed from 1999 to 2006 and 

no significant trend from 1982 to 2006 was observed. 

But this is somewhat different from Ge et al.’s [33] view. 

Ge et al. conducted a META analysis of China’s 1263 

phenological time series from 1960 to 2011 and found 

that the spring and summer phenology has a clear 

trend in advance, but the autumn phenology changes 

are more complex.Gao et al. [35] also believes that 

autumn phenological changes are complicated.They 

used global satellite data to study the spatial and 

temporal dynamics of the normalized vegetation index 

(NDVImax3), elevation gradient (EG) of spring (SOS) 

and autumn phenology (EOS) during the maximum 

three months from 1982 to 2015, and found that 

temperature is not the only control of phenology factor 

for the autumn phenology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure :1 Observed trends of air temperature and precipitation from 1971 to 2010 on the Tibetan Plateau. The data are from the 

climate records of 75 meteorological stations, where all daily precipitation data are available. a, Mean annual temperature 
(MAT), with the inset showing trends in seasonal temperature (

o
C per year) during the period 1971–2010. The straight line is a fit 

to the data: Y=0.037X-69.7 (R
2
= 0.593, p<0.001). b, Mean annual precipitation (MAP), with the inset showing trends in seasonal 

precipitation (mm per year) during the period 1971–2010. The straight line is a fit to the data: Y=0.840X-1177.0 (R
2
= 0.326, 

p<0.001). c, Spatial patterns of the trend of MAT changes from 1971 to 2010. d, Spatial patterns of the trend of MAP changes 
from 1971 to 2010. 
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In contrast to the field observations, several climate 

change manipulative experiments using open-top 

chamber (OTC) method found that warming advanced 

the onset of growing season and delayed the leaf 

senescence, and then prolonged the growing season 

[5,34]. Another overhead infrared heater method to 

simulate climate warming conducted by Wang et al. 

also observed that warming advanced starting green 

time and delay ending color time of plant on the Tibetan 

Plateau [36]. However, Klein et al. [28] found that 

warming sometimes extended, but did not advance, the 

growing season using open-top chamber (OTC) 

method. Compared with the researches on the effects 

of increasing temperature, effects of precipitation 

changes on plant phenology on the Tibetan Plateau are 

sparse and uncertainty, which mainly used remote 

sensing and modeling. Piao et al. [37] suggested that 

increased precipitation could postponed the onset of 

growing season in alpine meadow in China, which is 

mostly distributed on the Tibetan Plateau. However, 

Shen et al. [30] indicated that the effects of precipita- 

tion on the onset of growing season depended on the 

study period or stations examined. Increasing pre- 

season precipitation tends to advance the onset of 

growing season on the Tibetan Plateau most in areas 

with lower aridity, where the precipitation exerts a 

weaker influence. Therefore, further studies based on 

manipulative experiment will be needed to understand 

the underlying mechanisms of these responses in 

future. 

3.2. Changes in Plant Productivity and Species 
Diversity 

Rustad et al. [38] conducted a meta-analysis of 20 

warming experiments, and found that increasing tem- 

perature significantly increase aboveground primary 

productivity (ANPP) by an average of 19%. Similarly, 

most studies across alpine ecosystems also reported 

warming prolonged growing season and enhanced 

plant growth thus induced a significant increase in net 

primary production on the Tibetan Plateau [5,19,34]. 

Using OTC method in alpine meadow and swamp 

 

Figure 2: The published on-going warming projects on the Tibetan Plateau. Numbers marked on the map mean the sites 
described in Table 1. 



44     The Global Environmental Engineers, 2020, Vol. 7 Wei et al. 

meadow ecosystems, Li et al. [34] observed that 

warming significantly increased aboveground plant and 

root biomass as results of increasing the plant growth 

or prolonging the growing season, or increasing 

nutrient availability. Consistent with a meta-analysis of 

13 sites by Arft et al. [39], increased coverage of 

graminoids, legumes and ANPP of the community were 

demonstrated in an alpine meadow on the Tibetan 

Plateau by Wang et al. [19]. However, Klein et al. 

[14,28] found opposite results in the same alpine 

meadow using an OTC warming experiment. They 

observed that a decrease of graminoids and a 

significantly decrease of ANPP due to the contribution 

of the graminoids to the ANPP of the community. A 

recent warming experiment on alpine meadows in the 

northern Tibetan Plateau pointed out that the dryness 

caused by warming will weaken its impact on 

vegetation indices and biomass production [40]. A 

temperature and precipitation control experiment in the 

alpine grassland in the northeast of the Qinghai-Tibet 

Plateau confirmed that climate warming did not 

increase plant biomass but increased its nutrient 

content, while increasing precipitation significantly 

increased plant biomass [41]. 

Table 1: Global Change Researches Published from 2000 to 2019 on the Tibetan Plateau 

Longitude and 
Latitude 

Site MAT 
(
o
C) 

MAP 
(mm) 

Methods Principal 
Investigator 

References 

100º55´E, 37º58´N 1 1 409 OTC and SR Jianguo Wu Heng et al., 2011 

101°12′E, 37°36′N 2 -1.2 486 IH Jin-Sheng He  Xu et al., 2018 

101º12´E, 37º36´N 2 -1.7 560 OTC Julia Klein Klein et al., 2004, 2005, 2007 

101º12´E, 37º36´N 2 -1.7 560 IH Shiping Wang Luo et al., 2009,2010, Lin et al., 2011; Duan et al., 2012; 
Wang et al., 2012; Shen et al., 2013; Wang et al., 2014a; 
Wang et al., 2014b; Jing et al., 2014; Lin et al., 2015 

101º12´E, 37º36´N 2 -1.7 560 SR Zhenxi Shen Shen et al., 2002 

92º53´E, 34º43´N 3 -5.3 269.7 OTC Genxu Wang Li et al., 2011a; Li et al., 2011b; Yang et al., 2011 

92º53´E, 34º43´N 3 -5.3 269.7 OTC Qing-Bai Wu Wang and Wu, 2010 

100º26´-103º43´E, 
34º17´- 34º25´N 

4 * * OTC Wei Liu Zhao et al., 2006 

104º01´E, 32º59´N 5 2-4 850 OTC Kai-Yun Wang Xu et al., 2009 

103°40′E, 32°59′N 6 4.8 693.2 OTC Qing Liu Ma et al., 2018, 2019 

103º33´E, 32º51´N 7 2.8 718 OTC and SR Ning Wu Shi et al., 2012 

103º33´E, 32º51´N 7 2.8 718 OTC Ning Wu Shi et al., 2008, Wang et al., 2011 

102º33´E, 32º48´N 8 8.9 920 OTC Shucun Sun Li et al., 2011a 

103º53´E, 31º41´N 8 8.9 920 IH Qing Liu Liu et al., 2011 

102º35´E, 31º35´N 8 8.9 920 OTC Qing Liu Xu et al., 2010a, Xu et al., 2010b 

102º33´E, 32º48´N 8 8.9 920 SR Shucun Sun Wu et al., 2011a 

103º54´E, 31º41´N 9 8.6 919.5 OTC Kai-Yun Wang Wu et al., 2007 

92°00.921'E, 
31°38.513'N 

10 -
1.16 

430 OTC Yangjian 
Zhang 

Jiang et al.,2017 

88º42´E, 30º57´N 11 0 300 OTC Xiaodan Wang Lu et al., 2013 

91º03´-91º04´E,  

30º30´-30º32´N 

12 1.3 477 OTC Zhenxi Shen Fu et al., 2012; Yu et al., 2014; Fu et al., 2015,  
Shen et al., 2015 

91°04′E, 30°30′N 12 1.3 477 OTC Ning Zong, 
Peili Shi 

Zong et al., 2018 

91°04′E, 30°30′N 12 1.83 476.03 OTC Zhenxi Shen Wang et al., 2017 

91º41´-100º58´E, 

30º27´-30º35´N 

13 1.8 * OTC Yu-Hong Zhao Zhao and Wei, 2010 

101º30´-102º15´E, 
29º20´-30º20´N 

14 3.8 1940 IH Genxu Wang Yang et al., 2013 

OTC = Open top chamber; SR = Simulated rainfall; IH =Infrared heater. 
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Table 2: Major Global Change Findings on the Tibetan Plateau 

Methods Years 
Spring 

Phenology 
Autumn 

Phenology 
Plant 

Productivity 
Plant 

Diversity 

Greenhouse 
Gas 

Emission 

Changes  
in SOC 

Other 
Ecosystem C 

Dynamics 
References 

IH 5 advanced delayed increased 

n.s 

but varied 
with year 

did not ER; 
increased 
N2O flux 
during 

growing 
season and 
deceased 

during non-
growing 

increased 
increased 

decomposition 
rate, DOC 

Luo et al., 
2009, Lin et al., 

2011, Rui et 
al., 2011, Rui 
et al., 2012, 

Wang et 
al.,2012 

IH and SR 3 - n.s - - - - - Xu et al., 2018 

OTC 4 n.s n.s decreased decreased - - 
decreased 

decomposition 
rate 

Klein et al., 
2004, 2005, 

2007 

OTC 1 - - - - increased ER - - 
Bai et al.,  

2011 

OTC 1 advanced delayed increased - - - - 
Xu et al.,  

2009 

OTC 3 - - increased - - - - 
Li et al.,  
2011b 

OTC 1 - - - - - - 

tended to 
decrease 
microbial 

biomass (MB) 

Fu et al., 2012 

OTC 1 - - - - increased ER - - 
Ma et al., 

2018 

OTC 1 - - increased increased - - - 
Jiang et al., 

2017 

OTC 1 - - n.s n.s increased ER - 
increased soil 

MB 

Shi et al., 
2008, Shi et 

al., 2012 

OTC 1 - - - - Increased ER n.s. 
reduced labile 
C, but did not 

affect MB 

Xu et al., 
2010b 

Field 
observation 

3 advanced - increased - n.s - 
depending on 
the magnitude 
of temperature 

Kato et al., 
2006, Saito  
et al., 2009 

Large-scale 
survey 

24 - - - - - n.s - 
Yang et al., 
2008, 2009, 

2010 

Remote 
sensing and 

modeling 
18 advanced - increased - - increased - 

Piao et al., 
2006a,b 

Modeling 24 

advanced 
from 1982-

1999; 
delayed 

from 1999-
2006 

- increased - increased SR increased - 
Piao et al., 

2011 

Modeling 55 

n.s from 
1960-1981; 
advanced 
from 1982-

2014 

n.s from 
1960-1981; 

delayed from  
1982-2014 

- - - - - 
Yang et al., 

2017 

Remote 
sensing and 

modeling 
42 - - - - - decreased - 

Zhang et al., 
2007 
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(Table 2): contd…. 

Methods Years 
Spring 

Phenology 
Autumn 

Phenology 
Plant 

Productivity 
Plant 

Diversity 

Greenhouse 
Gas 

Emission 

Changes  
in SOC 

Other 
Ecosystem C 

Dynamics 
References 

Field-
sampling,Re
mote sensing 
and modeling 

5 - - - - - decreased - 
Zhao et al., 

2018 

Remote 
sensing and 

modeling 
24 delayed advanced - - - - - Yu et al., 2010 

n.s. = No significantly. 

 

Beyond these, inconsistent with previous studies 

across  tundra ecosystems that warming causes about 

~30% species loss [39,42]. And on the Tibetan Plateau, 

the OTC warming experiment conducted by Klein et al. 

[14] observed that warming caused dramatic declines 

in plant species diversity. However Wang et al. [19] 

found that warming did not significantly affect plant 

species richness, but the effect of warming on plant 

species richness varied with the year. This difference 

between Klein et al. [14] and Wang et al. [19] is 

probably due to the different warming patterns between 

the OTC and infrared heater system. In addition, the 

responses of plants to climate changes were relatively 

slow and often varied with experiment years [19,39]; 

thus, to better understand the effect of increasing 

temperature on plant productivity and diversity, long-

term continuous observation is needed [12,43]. 

3.3. Exchanges in Ecosystem C Balance 

Temperature and precipitation are key drivers of 

ecosystem processes, as demonstrated by a number of 

climate change experiments [44-46]. It is certain that 

changes in temperature and precipitation have altered 

ecosystem C dynamics, and therefore will likely feed- 

back to ongoing climate change [43,47-48]. Numerous 

of climate change studies focused on alpine ecosystem 

C dynamics since the Tibetan Plateau is considered to 

be one of the world’s most sensitive areas and 

extensive alpine meadow on the Plateau may play an 

important role in the regional C balance [6,15,50-52]. 

One example is an integrated study of the effect of 

warming on ecosystem C dynamics in the Haibei 

Kobresia alpine meadow conducted by Wang et al. 

[50]. Observations of alpine meadow ecosystem CO2 

fluxes revealed that the ecosystem respiration was 

mainly controlled by soil temperature rather than soil 

moisture in the alpine meadow, however, the inter- 

annual variations in ecosystem respiration were strongly 

related to precipitation [53]. In the same experiment 

platform during the same period, some interesting de- 

composition rate and soil studies have partly explained 

this phenomenon. Warming increased decomposition 

rate and dissolve organic carbon concentration in soil 

solution was found by Luo et al. [16,50]. In addition, Rui 

et al. [54-55] observed that warming increased various 

C and N pools including microbial C, N and soil organic 

N, meanwhile the effects of warming can be controlled 

by soil moisture. However, short-term observation of 

experimental warming effects in alpine meadow using 

OTC methods indicated that warming tended to 

decrease microbial biomass, which may be attributed 

to warming-induced decline in soil water content [56], 

and the combined effects of warming and drying 

decreased soil microbial biomass and CO2 emission 

rate [52]. A recent research pointed out that experi- 

mental warming did not significantly affect the microbial 

biomass carbon concentration of rhizosphere soil, but 

significantly affected the microbial biomass carbon 

concentration of bulk soil, and its degree of influence 

changed with the growth season [57]. Through 

warming experiments, Ma et al. [58] confirmed that 

climate warming will increase the heterotrophic 

respiration and rhizosphere respiration of the Tibetan 

Plateau, thereby stimulating more carbon emissions 

from the soil to the atmosphere. 

Among the studies of climate change on the Tibetan 

Plateau, warming manipulative experiment have also 

demonstrated that winter dynamics have been shown 

to be particularly important for soil-atmosphere fluxes 

of greenhouse gases [59]. In addition to climate change 

manipulative experiments, Saito et al. [60] used eddy 

covariance measurements to study the relationship 

between net ecosystem CO2 exchange (NEE) and 

environmental variables and found that the effect of 

increasing temperature on NEE could be categorized 

into no change, increase and decrease depending on 

the changes in soil temperature at 5 cm depth. 
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3.4. Changes in Soil Organic Carbon 

Starting in 2001, a large-scale survey on soil 

organic carbon stocks in 405 profiles collected from 

135 sites across the Tibetan Plateau was conducted to 

estimate storage and spatial patterns of soil organic 

carbon (SOC) in the alpine grasslands [61-62]. This 

large spatial scale survey, combined with a satellite-

based dataset of enhanced vegetation index, showed 

that topsoil C stocks in the Tibetan Plateau grasslands 

did not change significantly over the past 20 years. 

This is inconsistent with the results of regional 

modeling studies [63], which suggested that extended 

growing season and enhanced plant growth induced by 

increasing temperature may result in an increase of 

organic C inputs to soil. And based on bioclimatic data 

provided by the IPCC5, Zhao et.al proposed that the 

total SOC will decrease in the case of global warming 

[27]. However, Wu et al. [51] found that it was root 

turnover but not rhizodeposition that controlled C flow 

into soil through plant roots in an alpine meadow on the 

Tibetan Plateau. Due to the time, little research has 

been done about how field manipulations of 

temperature and precipitation as independent or 

combined factors affect SOC in Tibetan Plateau. 

Currently, it is difficult to find consistent trends of 

plant growth and ecosystem C balance against the on-

going climate change in Tibetan Plateau, because (1) 

there is a small number of global change experiments 

that conducted in Tibetan Plateau and (2) the lack of 

precipitation changes and the combined temperature 

and precipitation manipulations experiments in natural 

ecosystem in Tibetan Plateau. In addition, the lack of 

research on the response of the underground part of 

the Tibetan Plateau ecosystem to climate change has 

led to a lack of knowledge about the mechanism of 

ecosystem carbon balance in response to climate 

change.  In the study of the impact of climate change 

on plants, climate variables cannot be considered 

solely, and various factors and their connections should 

be weighed and considered. For example, the grass- 

land ecosystem along the western coast of California 

can better simulate primary productivity only by 

establishing a four-dimensional "temperature-precipita- 

tion-CO2-nitrogen" spatial model [64]. To better under- 

stand the mechanism of plant growth responses to 

climate change and the direction and magnitude of 

ecosystem C balance responses to climate change, the 

effects of fluctuating temperature and precipitation as 

well as the combination of temperature and precipita- 

tion should be examined on the Tibetan Plateau [46].  

4. SUMMARY 

In this paper, we have reviewed previous reports on 

climate changes of Tibetan Plateau and analyzed the 

observed climate changes on the Tibetan Plateau bet- 

ween 1971 and 2010. We found that Tibetan Plateau is 

actually experiencing climate warming especially in 

winter, and precipitation changes both spatially and tem- 

porally inconsistent.  However, as we have discussed 

above, the global change researches conducted are 

non-systematic and limited. It is difficult to find a 

consistent trend of plant growth and ecosystem C 

balance against the on-going climate changes on the 

Tibetan Plateau. Temperature-precipitation manipula- 

tive experiments can be our useful approach to 

understand and predict the possible response of alpine 

ecosystem to future climate changes. 

On the basis of the analysis of the interesting 

findings of plant growth and ecosystem processes 

response to climate changes on the Tibetan Plateau, 

for future global change manipulative experiments 

conducted on the Tibetan Plateau, we recommend: 

1. Conduct more manipulative experiments with 

combined temperature and precipitation factors. 

Because of big seasonal variation of climate 

change on the Tibetan Plateau, these experiments 

should not only consider the amplitude of tem- 

perature and precipitation, but also the seasonality. 

2. Identify how climate change affects plant growth 

processes, both at the scale of individual plant and 

community. In addition to plant phenology, used 

both aboveground and belowground biomass and 

productivity to estimate responses of plant growth 

to climate change. 

3. Provide the systematic variations and potential 

mechanisms of ecosystem response to climate 

changes. Through long-term research, understand- 

ing how temperature increase and changes in 

precipitation affect plant allocate C among 

respiration, storage and transfer can help us to 

predict how the ecosystem C balance response to 

climate change and potential feedback to climate 

change. This will greatly help us take measures to 

increase carbon sequestration and mitigate climate 

change on the Tibetan Plateau.  
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