Experimental Characterization of Low-Temperature Inorganic. Phase Change Materials by Differential Scanning Calorimetry

Authors

  • Josh Charles Advanced Cooling Technologies, 1046 New Holland Ave., Lancaster, PA 17601, USA
  • Xingchao Wang Lehigh University, 117 ATLSS Dr., Bethlehem, PA 18015, USA
  • Carlos E. Romero Lehigh University, 117 ATLSS Dr., Bethlehem, PA 18015, USA
  • Sudhakar Neti Lehigh University, 117 ATLSS Dr., Bethlehem, PA 18015, USA

DOI:

https://doi.org/10.15377/2409-5826.2019.06.8

Keywords:

Latent energy storage, Phase change material, Energy storage, Hydrated salt, Calcium chloride hexahydrate, PCM.

Abstract

 Recently, phase change materials (PCMs) have received significant attention due to their potential for high-density thermal energy storage. While high-temperature PCMs have received the most focus in the thermal energy storage community, there are potential uses for PCMs with phase transition temperatures close to typical ambient temperatures (15-35°C). For a PCM to be widely used in a large-scale thermal energy storage system, it must meet the cost, safety, and energy density criteria in addition to having an appropriate phase change temperature. Inorganic, hydrated salt PCMs are the most promising, low-temperature PCMs, which can meet all of these criteria. After completing a review of known inorganic PCMs with phase change temperatures in the desired range, six of the more promising PCMs were tested by differential scanning calorimetry (DSC) to determine both their phase change temperatures (Tm) and latent heats of fusion (Hf). The first of these PCMs (potassium fluoride tetrahydrate) was eliminated after successful DSC testing as it became apparent that this PCM had serious health and safety concerns. Two new calcium chloride hexahydrate (CaCl2•6H2O)-based PCMs were also tested: CaCl2•6H2O + potassium nitrate (KNO3) and CaCl2•6H2O + magnesium chloride hexahydrate (MgCl2•6H2O). For CaCl2•6H2O + KNO3, it was found that the melt temperature of the PCM could be varied by changing the percentage of KNO3. In the case of the CaCl2•6H2O + MgCl2•6H2O, phase diagram modeling and physical experiments were used to determine the correct eutectic mixture, which leads to congruent melting/freezing of this PCM. CaCl2•6H2O was also tested by DSC, with found Tm and Hf results similar to those presented in the literature. Finally, sodium sulfate decahydrate (Na2SO4•10H2O) and Na2SO4•10H2O + 25 wt% H2O were tested by DSC. For both of these PCMs, significant phase separation was observed, which must be addressed if these PCMs are to be used commercially.

Author Biographies

Xingchao Wang, Lehigh University, 117 ATLSS Dr., Bethlehem, PA 18015, USA

Energy Research Center

Carlos E. Romero, Lehigh University, 117 ATLSS Dr., Bethlehem, PA 18015, USA

Energy Research Center

Sudhakar Neti, Lehigh University, 117 ATLSS Dr., Bethlehem, PA 18015, USA

Energy Research Center

References

Telkes, M. Thermal Energy Storage in Salt Hydrates. Solar Energy Materials, 2, 1980, 381-393. https://doi.org/10.1016/0165-1633(80)90033-7

Lane, G. (ed.) Solar Heat Storage: Latent Heat Materials, Volume I: Background and Scientific Principles. CRC Press, Boca Raton, FL, 1983. https://doi.org/10.1115/1.3266412

Lane, G. Low Temperature Heat Storage with Phase Change Materials. The International Journal of Ambient Energy, 1(3), 1980, 155-168. https://doi.org/10.1080/01430750.1980.9675731

Carlsson, B., Stymne, H., Wettermark, G. An Incongruent Heat-of-Fusion System-CaCl2•6H2O-Made Congruent Through Modification of the Chemical Composition of the System. Solar Energy, 23, 1979, 343-350. https://doi.org/10.1016/0038-092X(79)90129-4

Abhat, A. Low Temperature Latent Heat Thermal Energy Storage: Heat Storage Materials. Solar Energy, 30(4), 1983, 313-332. https://doi.org/10.1016/0038-092X(83)90186-X

Kimura, H. Impurity Effect on Growth Rates of CaCl2•6H2O Crystals. Journal of Crystal Growth, 73, 1985, 53-62. https://doi.org/10.1016/0022-0248(85)90330-6

Kimura, H., Kai, J. Mixtures of Calcium Chloride Hexahydrate with Some Salt Hydrates or Anhydrous Salts as Latent Heat Storage Materials. Energy Conversion and Management, 28(3), 1988, 197-200. https://doi.org/10.1016/0196-8904(88)90021-0

Kimura, H., Kai, J. Phase Change Stability of CaCl2•6H2O. Solar Energy, 33(6), 1984, 557-563. https://doi.org/10.1016/0038-092X(84)90011-2

N’Tsoukpoe, K., Rammelberg, H., Lele, A., Korhammer, K., Watts, B., Schmidt, T., Ruck, W. A Review on the Use of Calcium Chloride in Applied Thermal Engineering. Applied Thermal Engineering, 75, 2015, 513-531. https://doi.org/10.1016/j.applthermaleng.2014.09.047

N’Tsoukpoe, D., Schmidt, T., Rammelberg, H., Watts, B., Ruck, W. A Systematic Multi-Step Screening of Numerous Salt Hydrates for Low Temperature Thermochemical Energy Storage. Applied Energy, 124, 2014, 1-16. https://doi.org/10.1016/j.apenergy.2014.02.053

Tyagi, V., Kaushik, S., Pandey, A., Tyagi, S. Experimental Study of Supercooling and pH Behaviour of a Typical Phase Change Material for Thermal Energy Storage. Indian Journal of Pure & Applied Physics, 49, 2011, 117-125.

Tyagi, V., Buddhi, D. PCM Thermal Storage in Buildings: A State of Art. Renewable and Sustainable Energy Reviews, 11, 2007, 1147-1166. https://doi.org/10.1016/j.rser.2005.10.002

Carlsson, B. Phase Change Behaviour of Some Latent Heat Storage Media Based on Calcium Chloride Hexahydrate. Solar Energy, 83, 2009, 485-500. https://doi.org/10.1016/j.solener.2008.09.004

Sharma, S., Kitano, H., & Sagara, K. Phase Change Materials for Low Temperature Solar Thermal Applications. Res. Rep. Fac. Eng. Mie Univ., 29, 2004, 31-64.

Sharma, A., Tyagi, V., Chen, C., Buddhi, D. Review on Thermal Energy Storage with Phase Change Materials and Applications. Renewable and Sustainable Energy Reviews, 13, 2009, 318-345. https://doi.org/10.1016/j.rser.2007.10.005

Sharma, A. Chen, C. Solar Water Heating System with Phase Change Materials. International Review of Chemical Engineering, 1(4), 2009, 297-307.

Oró, E., de Gracia, A., Castell, A., Farid, M., Cabeza, L. Review on Phase Change Materials (PCMs) for Cold Thermal Energy Storage Applications. Applied Energy, 99, 2012, 513-533. https://doi.org/10.1016/j.apenergy.2012.03.058

Cantor, S. Applications of Differential Scanning Calorimetry to the Study of Thermal Energy Storage. Thermochimica Acta, 26(1), 1978, 39-47. https://doi.org/10.1016/0040-6031(78)80055-0

Cantor, S. DSC Study of Melting and Solidification of Salt Hydrates. Thermochimica Acta, 33, 1979, 69-86. https://doi.org/10.1016/0040-6031(79)87030-6

Bhatt, V., Gohil, K., Mishra, A. Thermal Energy Storage Capacity of Some Phase Changing Materials and Ionic Liquids. International Journal of ChemTech Research, 2(3), 2010, 1771-1779.

Cabeza, L., Castell, A., Barreneche, C., de Gracia, A., Fernández, A. Materials Used as PCM in Thermal Energy Storage in Buildings: A Review. Renewable and Sustainable Energy Reviews, 15, 2011, 1675-1695. https://doi.org/10.1016/j.rser.2010.11.018

Naumann, R., Emons, H. Results of Thermal Analysis for Investigation of Salt Hydrates as Latent Heat-Storage Materials. Journal of Thermal Analysis, 35, 1989, 1009-1031. https://doi.org/10.1007/BF02057256

Siemens, P., Giauque, W. The Entropies of the Hydrates of Sodium Hydroxide. II. Low-Temperature Heat Capacities and Heats of Fusion of NaOH•2H2O and NaOH•3.5H2O. The Journal of Physical Chemistry, 73(1), 1969, 149-157. https://doi.org/10.1021/j100721a024

Zalba, B., Marín, J. M., Cabeza, L. F., & Mehling, H. Review on Thermal Energy Storage with Phase Change - Materials Heat Transfer Analysis and Applications. Applied Thermal Engineering, 23, 2003, 251-283. https://doi.org/10.1016/S1359-4311(02)00192-8

Heckenkamp, J., Baumann, H. Latentwärmespeicher (Latent Heat Storage Systems). Nachrichten aus Chemie, Technik und Laboratorium / Herausgegeben von der Gesellschaft Deutscher Chemiker, 45(11), 1997, 1075-1081. https://doi.org/10.1002/nadc.199700023

Shamberger, P., Reid, T. Thermophysical Properties of Potassium Fluoride Tetrahydrate from (243 to 348) K. Journal of Chemical & Engineering Data, 58, 2013, 294-300. https://doi.org/10.1021/je300854w

Socaciu, L. Thermal Energy Storage with Phase Change Material. Leonardo Electronic Journal of Practices and Technologies, (20), 2012, 75-98.

Kenisarin, M. Short-Term Storage of Solar Energy. 1. Low Temperature Phase-Change Materials. Applied Solar Energy, 29(2), 1993, 48-65.

Climator. Phase Change Materials. Accessed: Sept. 2015.

Demirbas, M., Thermal Energy Storage and Phase Change Materials: An Overview. Energy Sources, Part B: Economics, Planning, and Policy. 1(1), 2006, 85-95. https://doi.org/10.1080/009083190881481

Jeon, J., Jungki, S., Jeong, S., Kim, S. PCM Application Methods for Residential Building Using Radiant Floor Heating Systems. Building Environment & Materials Lab, School of Architecture, Soongsil University, Seoul, Korea.

Nagano, K., Mochida, T., Takeda, S., Domański, R., & Rebow, M. Thermal Characteristics of Manganese (II) Nitrate Hexahydrate as a Phase Change Material for Cooling Systems. Applied Thermal Engineering, 23, 2003, 229-241. https://doi.org/10.1016/S1359-4311(02)00161-8

Garg, H., Mullick, S., Bhargava, A. Solar Thermal Energy Storage. D. Reidel Publishing Company, Dordrecht, Holland. 1985. https://doi.org/10.1007/978-94-009-5301-7

Esen, M, Durmuş, A., Durmuş, A. Geometric Design of Solar- Aided Latent Heat Store Depending on Various Parameters and Phase Change Materials. Solar Energy, 62(1), 1998, 19-28. https://doi.org/10.1016/S0038-092X(97)00104-7

Feilchenfeld, H., Fuchs, J., Kahana, F., Sarig, S. The Melting Point Adjustment of Calcium Chloride Hexahydrate by Addition of Potassium Chloride or Calcium Bromide Hexahydrate. Solar Energy, 34(2), 1985, 199-201. https://doi.org/10.1016/0038-092X(85)90181-1

Hale, D., Hoover, M., O’Neill, M. Phase Change Materials Handbook. Technical Report. Huntsville (AL): National Aeronautics and Space Administration; 1971 September. Report no.: NASA-CR-61363. Contract no.: NAS8-25183. http://dx.doi.org/2060/19720012306

Leenhardt & Boutaric. Cryoscopie Dans les Sels Hydratés Fondus. Bulletin de la Société Chimique de France, 13, 1913, 651-657.

Lorsch, H., Kauffman, K., Denton, J. Thermal Energy Storage for Solar Heating and Off-Peak Air Conditioning. Energy Conversion, 17, 1975, 1-8. https://doi.org/10.1016/0013-7480(75)90002-9

Telkes, M. Thermal Storage for Solar Heating and Cooling. Proceedings of the Workshop on Solar Energy Storage Subsystems for the Heating and Cooling of Buildings, Charlottesville, VA, 1975, 17-23.

Shamberger, P., Reid, T. Thermophysical Properties of Lithium Nitrate Trihydrate from (253 to 353) K. Journal of Chemical & Engineering Data, 57, 2012, 1404-1411. https://doi.org/10.1021/je3000469

Costello, V., Melsheimer, S., Edie, D. Heat Transfer and Calorimetric Studies of a Direct Contact-Latent Heat Energy Storage System. Proceedings of the Winter Annual Meeting of the American Society of Mechanical Engineers, San Francisco, CA, December 10-15, 1978.

Gawron, K., Schröder, J. Properties of Some Salt Hydrates for Latent Heat Storage. Energy Research, 1, 1977, 351-363. https://doi.org/10.1002/er.4440010407

Ghoneim, A. Comparison of Theoretical Models of Phase- Change and Sensible Heat Storage for Air and Water-Based Solar Heating Systems. Solar Energy, 42(3), 1989, 209-220. https://doi.org/10.1016/0038-092X(89)90013-3

Kobe, K., Anderson, C. The Heat Capacity of Saturated Sodium Sulfate Solution. The Journal of Physical Chemistry, 40(4), 1936, 429-433. https://doi.org/10.1021/j150373a001

Pitzer, K., Coulter, L. The Heat Capacities, Entropies, and Heats of Solution of Anhydrous Sodium Sulfate and of Sodium Sulfate Decahydrate. The Application of the Third Law of Thermodynamics to Hydrated Crystals. Journal of the American Chemical Society, 60, 1938, 1310-1313. https://doi.org/10.1021/ja01273a010

Salunkhe, P., Krishna, D. Investigations of Latent Heat Storage Materials for Solar Water and Space Heating Applications. Journal of Energy Storage, 12, 2017, 243-260. https://doi.org/10.1016/j.est.2017.05.008

Telkes, M. Nucleation of Supersaturated Inorganic Salt Solutions. Industrial and Engineering Chemistry, 1952, 1308-1310. https://doi.org/10.1021/ie50510a036

Kenisarin, M., Mahkamov, K. Solar energy storage using phase change materials. Renewable and Sustainable Energy Reviews, 11(9), 2007, 1913-1965. https://doi.org/10.1016/j.rser.2006.05.005

Dow Chemical Company. Calcium Chloride Handbook: A Guide to Properties, Forms, Storage and Handling. Dow Chemical Company, 2003.

Zhang, Y., Zhou, G., Lin, K., Zhang, Q., Di, H. Application of Latent Heat Thermal Energy Storage in Buildings: State-ofthe- Art and Outlook. Building and Environment, 42(6), 2007, 2197-2209. https://doi.org/10.1016/j.buildenv.2006.07.023

Gao, D., Deng, T. Energy Storage - Preparations and Physiochemical Properties of Solid-Liquid Phase Change Materials for Thermal Energy Storage. Materials and Processes for Energy: Communicating Current Research and Technological Developments. Formatex., 2013, 32-44.

Linnow, K., Niermann, M., Bonatz, D., Posern, K., Steiger, M. Experimental Studies of the Mechanism and Kinetics of Hydration Reactions. Energy Procedia, 48, 2014, 394-404. https://doi.org/10.1016/j.egypro.2014.02.046

Lane, G., Rossow, H. Reversible Phase Change Compositions of Calcium Chloride Hexahydrate with Potassium Chloride. U.S. Patent US 4613444 A, 1986 [cited December 6, 2016

ThermoFisher Scientific. Potassium Fluoride Safety Data Sheet. Rev. May, 2018. Available from: Accessed: Oct. 12, 2018.

王维, 张慧洁, 张哲明, 陈海滨, 吴景深. Phase Change Material and Preparation Method. Chinese Patent CN 104419381 A, 2015 [cited Aug. 9, 2018

Thomsen, K. Phase Diagram Software. Aqueous Solutions Aps., Denmark. Available from: .

Thomsen, K., Iliuta, M., Rasmussen, P. Extended UNIQUAC Model for Correlation and Prediction of Vapor-Liquid-Liquid- Solid Equilibria in Aqueous Salt Systems Containing Non-Electrolytes. Part B. Alcohol (Ethanol, Propanols, Butanols)-Water-Salt Systems. Chemical Engineering Science, 59, 2004, 3631-3647. https://doi.org/10.1016/j.ces.2004.05.024

Iliuta, M., Thomsen, K., Rasmussen, P. Extended UNIQUAC Model for Correlation and Prediction of Vapour-Liquid-Solid Equilibria in Aqueous Salt Systems Containing Non- Electrolytes. Part A. Methanol-Water-Salt Systems. Chemical Engineering Science, 55, 2000, 2673-2686. https://doi.org/10.1016/S0009-2509(99)00534-5

Roozeboom, H. Experimentelle und Theoretische Studien über die Gleichgewichtsbedingungen Zwischen Festen und Flüssigen Verbinungen von Wasser min Salzen, Besonders mit dem Chlorcalcium. Zeitschrift f. Physik. Chemie. 4, 1889, 31-65. https://doi.org/10.1515/zpch-1889-0105

Feilchenfeld, H., Fuchs, J., Sarig, S. A Calorimetric Investigation of the Stability of Stagnant Calcium Chloride Hexahydrate Melt. Solar Energy, 32(6), 1984, 779-784. https://doi.org/10.1016/0038-092X(84)90252-4

Feilchenfeld, H., Sarig, S. Calcium Chloride Hexahydrate: A Phase-Changing Material for Energy Storage. Industrial & Engineering Chemistry Product Research and Development, 24(1), 2985, 130-133. https://doi.org/10.1021/i300017a024

Brandstetter, A. On the Stability of Calcium Chloride Hexahydrate in Thermal Storage Systems. Solar Energy, 41(2), 1988, 183-191. https://doi.org/10.1016/0038-092X(88)90135-1

Lane, G. Adding Strontium Chloride or Calcium Hydroxide to Calcium Chloride Hexahydrate Heat Storage Material. Solar Energy, 27, 1981, 73-75. https://doi.org/10.1016/0038-092X(81)90023-2

Lane, G. (ed.) Solar Heat Storage: Latent Heat Materials, Volume II: Technology. CRC Press, Boca Raton, FL. 1986.

Shahbaz, K., AlNashef, I., Lin, R., Hashim, M., Mjalli, F., Farid, M. A Novel Calcium Chloride Hexahydrate-Based Deep Eutectic Solvent as a Phase Change Materials. Solar Energy Materials & Solar Cells, 155, 2016, 147-154. https://doi.org/10.1016/j.solmat.2016.06.004

Yuan, K., Zhou, Y., Sun, W., Fang, X., Zhang, Z. A Polymer- Coated Calcium Chloride Hexahydrate/Expanded Graphite Composite Phase Change Material with Enhanced Thermal Reliability and Good Applicability. Composites Science and Technology, 156, 2018, 78-86. https://doi.org/10.1016/j.compscitech.2017.12.021

Li, X., Zhou, Y., Nian, H., Zhang, Z., Dong, O., Ren, X., Zeng, J., Hai, C., Shen, Y. Advanced Nanocomposite Phase Change Material Based on Calcium Chloride Hexahydrate with Aluminum Oxide Nanoparticles for Thermal Energy Storage. Energy & Fuels, 31, 2017, 6560-6567. https://doi.org/10.1021/acs.energyfuels.7b00851

Cohen, E. Die Bestimmung von Umwandlungspunkten auf Elektrischem Wege und die Elektromotorische Kraft bei Chemischer Zersetzung. Zeitshrift für Physikalische Chemie, 14, 1894, 53-92. https://doi.org/10.1515/zpch-1894-1403

Leenhardt & Boutaric. Cryoscopie Dans les Sels Hydratés Fondus. Bulletin de la Société Chimique de France, 13, 1913, 651-657.

Kobe, K., Anderson, C. The Heat Capacity of Saturated Sodium Sulfate Solution. The Journal of Physical Chemistry, 40(4), 1936, 429-433. https://doi.org/10.1021/j150373a001

Telkes, M., Raymond, R. Storing Solar Heat in Chemicals – A Report on the Dover House. Heating and Ventilating, 46, 1949, 80-86.

Butti, K., Perlin, J. A Golden Thread – 2500 Years of Solar Architecture and Technology. Cheshire Books, Palo Alto, CA. 1980.

Furbo, S. Heat Storage Units Using a Salt Hydrate as Storage Medium Based on the Extra Water Principle. Report EUR 8169 EN, Commission of the European Communities, Luxembourg, 1983.

Downloads

Published

2019-12-30

How to Cite

1.
Josh Charles, Xingchao Wang, Carlos E. Romero, Sudhakar Neti. Experimental Characterization of Low-Temperature Inorganic. Phase Change Materials by Differential Scanning Calorimetry. J. Adv. Therm. Sci. Res. [Internet]. 2019Dec.30 [cited 2021Sep.26];6(1):71-84. Available from: https://www.avantipublishers.com/jms/index.php/jatsr/article/view/882

Issue

Section

Articles