Energetic Analysis in a Spray Drying Process

Authors

  • Alex Notaroberto Madeira University of Taubaté, 12060-440, Taubaté, SP, Brazil
  • Carlos Alberto Chaves University of Taubaté, 12060-440, Taubaté, SP, Brazil
  • Wendell de Queiróz Lamas University of São Paulo, 12602-810, Lorena, SP, Brazil

DOI:

https://doi.org/10.15377/2409-5826.2020.07.5

Keywords:

Energetic resources, Productivity, Psychrometry.

Abstract

 The present work aims in evaluate the installation of an equipment of spray drying, by psychrometry technique, analyse the power sources consumption and relates with the productivity of the equipment, by energy auditory. This work consists in comparing the evaporation capacity of a 750 kg/h of water spray dryer and the amount of water that comes from atmospheric air, where the equipment consumes 160 kWh and 80 kg of LGP/h. Therefore, this work demonstrates that to project a spray dryer it must be analysed these water mass values in atmospheric air and be contemplated a dehumidifier in order to prevent so significant and different losses in different periods of the same day.

Author Biographies

Alex Notaroberto Madeira, University of Taubaté, 12060-440, Taubaté, SP, Brazil

Post-Graduate Programme in Mechanical Engineering

Carlos Alberto Chaves, University of Taubaté, 12060-440, Taubaté, SP, Brazil

Post-Graduate Programme in Mechanical Engineering

Wendell de Queiróz Lamas, University of São Paulo, 12602-810, Lorena, SP, Brazil

Lorena School of Engineering

References

Axtell B. Drying Food for Profit: A Guide for Small Businesses. Rugby, GB-WAR: Practical Action Publishing; 2002. Available from: https://www.developmentbookshelf. com/doi/book/10.3362/9781780444819.

Masters K. Spray Drying in Practice. 3rd ed. Charlottenlund, DK-84: SprayDryConsult; 2002.

Madeira AN. Otimização do Processo de Spray Drying pelo Uso de Pré-desumidificadores no Ar de Entrada. Taubaté, BR-SP: Universidade de Taubaté; 2009. Available from: http://repositorio.unitau.br/jspui/bitstream/20.500.11874/679/1 /AlexNotarobertoMadeira.pdf.

Souza MSMd. Ativos microencapsulados encontram mais Aplicações. Química e Derivados. 2000;p. 1-5. Available from: https://www.quimica.com.br/ativos-microencapsuladosencontram-mais-aplicacoes/.

Favaro-Trindade CS, Pinho SCd, Rocha GA. Revisão: Microencapsulação de ingredientes alimentícios. Brazilian Journal of Food Technology. 2008;11(2): 103-112.

Tan LW, Ibrahim MN, Kamil R, Taip FS. Empirical modeling for spray drying process of sticky and non-sticky products. Procedia Food Science. 2011;1: 690-697. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2211601X110010 52.

Akulich PV, Slizhuk DS. Thermohydrodynamics of a Spray Drying Installation with Convective-Radiative Energy Supply. Journal of Engineering Physics and Thermophysics. 2020; 93(1): 38-44. Available from: http://link.springer.com/10.1007/ s10891-020-02088-6.

Shahidi F, Han X. Encapsulation of food ingredients. Critical Reviews in Food Science and Nutrition. 1993; 33(6): 501- 547. Available from: https://www.tandfonline.com/doi/full/ 10.1080/10408399309527645.

Alexander K, King CJ. Factor Governing Surface Morphology of Spray-dried Amorphous Substances. Drying Technology. 1985; 3(3): 321-348. Available from: http://www.tandfonline. com/doi/abs/10.1080/07373938508916275.

Bakan JA. Microencapsulation of Food and Related Products. Food Technology. 1973;27(11):34-44.

Silva PTd, Fries LLM, Menezes CRd, Holkem AT, Schwan CL, Wigmann ÉF, et al. Microencapsulation: Concepts, mechanisms, methods and some applications in food technology. Ciência Rural. 2014; 44(7): 1304-1311. Available from: http://www.scielo.br/scielo.php?script=sci{_}arttext {&}pid=S0103-84782014000701304{&}lng=en{&}tlng=en.

King W, Trubiano P, Perry P. Modified starch encapsulating agents offer superior emulsification, film forming, and low surface oil. Food Product Developments. 1976; 10(10): 54-57.

Reineccius GA. Flavor encapsulation. Food Reviews International. 1989; 5(2):147-176. Available from: http://www. tandfonline.com/doi/abs/10.1080/87559128909540848.

King CJ. Spray Drying: Retention of Volatile Compounds Revisited. Drying Technology. 1995; 13(5-7): 1221-1240. Available from: http://www.tandfonline.com/doi/abs/10.1080/ 07373939508917018.

Ré MI. Microencapsulação em Busca de Produtos Inteligentes. Ciência Hoje. 2000; 27(162): 25-29.

Rosenberg M, Young SL. Whey Proteins as Microencapsulating Agents. Microencapsulation of Anhydrous Milkfat - Structure Evaluation. Food Structure. 1993; 12(1): 31-41. Available from: https://digitalcommons.usu.edu/foodmicro structure/vol12/iss1/4.

Julklang W, Golman B. Effect of process parameters on energy performance of spray drying with exhaust air heat recovery for production of high value particles. Applied Energy. 2015; 151: 285-295. Available from: https:// linkinghub.elsevier.com/retrieve/pii/S0306261915005322.

Piatkowski M, Taradaichenko M, Zbicinski I. Energy Consumption and Product Quality Interactions in Flame Spray Drying. Drying Technology. 2015; 33(9): 1022-1028. Available from: http://www.tandfonline.com/doi/full/10.1080/ 07373937.2014.924137.

Saygi G, Erbay Z, Koca N, Pazir F. Energy and exergy analyses of spray drying of a fruit puree (cornelian cherry puree). International Journal of Exergy. 2015; 16(3): 315. Available from: http://www.inderscience.com/link.php?id= 68229.

Khuenpet K, Charoenjarasrerk N, Jaijit S, Arayapoonpong S, Jittanit W. Investigation of suitable spray drying conditions for sugarcane juice powder production with an energy consumption study. Agriculture and Natural Resources. 2016; 50(2): 139-145. Available from: https://linkinghub.elsevier. com/retrieve/pii/S2452316X16300187.

Atuonwu JC, Stapley AGF. Reducing energy consumption in spray drying by monodisperse droplet generation: Modelling and simulation. Energy Procedia. 2017; 123: 235-242. Available from: https://linkinghub.elsevier.com/retrieve/pii/ S1876610217328229.

Domínguez-Niño A, Cantú-Lozano D, Ragazzo-Sanchez JA, Andrade-González I, Luna-Solano G. Energy requirements and production cost of the spray drying process of cheese whey. Drying Technology. 2018; 36(5): 597-608. Available from: https://www.tandfonline.com/doi/full/10.1080/07373937. 2017.1350863.

Kosasih EA, Rafdi M, Firdaus. Experimental investigation of vitamin C yield of tomatoes and vitamin C essence by spray drying and dehumidifying the drying air: Product quality and energy consumption. In: 9th International Conference on Thermofluids 2017, THERMOFLUID 2017. vol. 2001. Yogyakarta, ID-YO: AIP Conference Proceedings; 2018. p. 040007. Available from: http://aip.scitation.org/doi/abs/ 10.1063/1.5049990.

Moejes SN, Visser Q, Bitter JH, van Boxtel AJB. Closed-loop spray drying solutions for energy efficient powder production. Innovative Food Science & Emerging Technologies. 2018; 47: 24-37. Available from: https://linkinghub.elsevier.com/ retrieve/pii/S1466856417312900.

Golman B, Yermukhambetova A. An Excel VBA-based educational module for simulation and energy optimization of spray drying process. Computer Applications in Engineering Education. 2019; 27(5): 1103-1112. Available from: https:// onlinelibrary.wiley.com/doi/abs/10.1002/cae.22139.

Wittner MO, Karbstein HP, Gaukel V. Energy efficient spray drying by increased feed dry matter content: Investigations on the applicability of Air-Core-Liquid-Ring atomization on pilot scale. Drying Technology. 2020; 38(10): 1323-1331. Available from: https://www.tandfonline.com/doi/full/10. 1080/07373937.2019.1635616.

Llagostera-Beltrán JI, França FA, Gonzaga RR. Notas de Aula de Sistemas Fluidotérmicos I: Psicrometria. Campinas, BR-SP: Universidade Estadual de Campinas; 2005. Available from: http://www.fem.unicamp.br/{%}7B{~}{%}7Dem672/ psicrometria.ppt.

Chen XD, Mujumdar AS, editors. Drying Technologies in Food Processing. Hoboken, US-NJ: Wiley-Blackwell; 2008.

Kudra T, Mujumdar AS. Advanced Drying Technologies. 2nd ed. Boca Raton, US-FL: CRC Press; 2009.

Velić D, Bilić M, Tomas S, Planinić M. Simulation, calculation and possibilities of energy saving in spray drying process. Applied Thermal Engineering. 2003; 23(16): 2119-2131. Available from: https://linkinghub.elsevier.com/retrieve/pii/ S1359431103001650.

Luna-Solano G, Salgado-Cervantes MA, Rodríguez-Jimenes GdC, García-Alvarado MA. Optimization of brewer's yeast spray drying process. Journal of Food Engineering. 2005; 68(1): 9-18. Available from: https://linkinghub.elsevier.com/ retrieve/pii/S0260877404002523.

Cheng F, Zhou X, Liu Y. Methods for Improvement of the Thermal Efficiency during Spray Drying. E3S Web of Conferences. 2018; 53: 01031. Available from: https://www. e3s-conferences.org/10.1051/e3sconf/20185301031.

Fargon Engenharia. Secador de Ar Comprimido por Refrigeração. São Paulo, BR-SP: Fargon Engenharia e Industria Ltda.; 2020. Available from: http://www.fargon.com. br/secador-de-ar-comprimido-por-refrigeracao.php.

Fargon Engenharia. Secador de Ar Comprimido por Adsorção. São Paulo, BR-SP: Fargon Engenharia e Industria Ltda.; 2020. Available from: http://www.fargon.com.br/ secador-de-ar-comprimido-por-adsorcao.php.

International Organization for Standardization (ISO). ISO 7183:2007 Compressed-air dryers - Specifications and testing. Genève, CH-GE: International Organization for Standardization (ISO); 2007. Available from: https://www.iso. org/standard/39401.html.

Downloads

Published

2020-11-17

How to Cite

1.
Alex Notaroberto Madeira, Carlos Alberto Chaves, Wendell de Queiróz Lamas. Energetic Analysis in a Spray Drying Process. J. Adv. Therm. Sci. Res. [Internet]. 2020Nov.17 [cited 2021Sep.26];7(1):40-7. Available from: https://www.avantipublishers.com/jms/index.php/jatsr/article/view/873

Issue

Section

Articles