Thermocapillary Flow in an Annular Two-Layer Liquid System

Authors

  • Haiqiong Xie Chongqing University, Chongqing 400044, P. R. China
  • Zhong Zeng Chongqing University, Chongqing 400044, P. R. China
  • Liangqi Zhang Chongqing University, Chongqing 400044, P. R. China
  • Yuui Yokota Tohoku University, Sendai 980-8577, Japan
  • Yoshiyuki Kawazoe Tohoku University, Sendai 980-8577, Japan
  • Akira Yoshikawa Tohoku University, Sendai 980-8577, Japan

DOI:

https://doi.org/10.15377/2409-5826.2016.03.01.4

Keywords:

Thermocapillary flow, Interface deformation, Lattice Boltzmann method.

Abstract

 By means of a hybrid lattice Boltzmann method, thermocapillary flow, driven by the surface tension owing to a horizontal temperature gradient along the interface in immiscible two-layer liquid system, is simulated numerically. The dynamic behavior of the interface is captured by using phase-field theory. The dependence of flow and interface deformation on the density ratio, Capillary number and aspect ratio, is investigated.

Author Biographies

Haiqiong Xie, Chongqing University, Chongqing 400044, P. R. China

Department of Engineering Mechanics

Zhong Zeng, Chongqing University, Chongqing 400044, P. R. China

Department of Engineering Mechanics

Liangqi Zhang, Chongqing University, Chongqing 400044, P. R. China

Department of Engineering Mechanics

Yuui Yokota, Tohoku University, Sendai 980-8577, Japan

Institute for Materials Research

Yoshiyuki Kawazoe, Tohoku University, Sendai 980-8577, Japan

Institute for Materials Research

Akira Yoshikawa, Tohoku University, Sendai 980-8577, Japan

Institute for Materials Research

References

Ostrach S. Low gravity fluid flows. Ann Rev Fluid Mech 1982; 14: 313-345. http://dx.doi.org/10.1146/annurev.fl.14.010182.001525

Morton JL, Ma N, Bliss DF, Bryant GG. Magnetic field effects during liquid-encapsulated Czochralski growth of doped photonic semiconductor crystals. J Crystal Growth 2003; 250: 174-182. http://dx.doi.org/10.1016/S0022-0248(02)02261-3

Cha SS, Ramachandran N, Worek WM. Heat transfer of thermocapillary convection in a two-layered fluid system under the influence of magnetic field. Acta Astronautica 2009; 64: 1066-1079. http://dx.doi.org/10.1016/j.actaastro.2009.01.018

Doi T, Koster JN. Thermocapillary convection in two immiscible liquid layers with free-surface. Phys Fluids A 1993; 5: 1914-1927. http://dx.doi.org/10.1063/1.858817

Liu QS, Roux B, Velarde MG. Thermocapillary convection in two-layer systems. International Int J Heat Mass Transfer 1998; 41: 1499-1511. http://dx.doi.org/10.1016/S0017-9310(97)00277-9

Gupta NR, Haj-Hariri H, Borhan A. Thermocapillary flow in double-layer fluid structures: An effective single-layer model. J Colloid Interface Sci 2006; 293: 158-171. http://dx.doi.org/10.1016/j.jcis.2005.06.036

Koster JN. Early mission report on the four ESA facilities: biorack; Bubble, drop and particle unit; Critical point facility and advanced protein crystallization facility flown on the IML- 2 spacelab mission. ESA Microgravity News 1994; 7: 2-7.

Liu H, Valocchi AJ, Zhang Y, Kang Q. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows. Phys Rev E 2013; 87: 013010. http://dx.doi.org/10.1103/PhysRevE.87.013010

Penrose O, Fife PC. Thermodynamically consistent models of phase-field type for the kinetic of phase transitions. Physica D: Nonlinear Phenomena 1990; 43: 44-62. http://dx.doi.org/10.1016/0167-2789(90)90015-H

Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. J Comput Phys 1992; 100: 335-354. http://dx.doi.org/10.1016/0021-9991(92)90240-Y

Downloads

Published

2016-07-13

How to Cite

1.
Haiqiong Xie, Zhong Zeng, Liangqi Zhang, Yuui Yokota, Yoshiyuki Kawazoe, Akira Yoshikawa. Thermocapillary Flow in an Annular Two-Layer Liquid System. J. Adv. Therm. Sci. Res. [Internet]. 2016Jul.13 [cited 2021Sep.26];3(1):33-8. Available from: https://www.avantipublishers.com/jms/index.php/jatsr/article/view/856

Issue

Section

Articles