A Parametric Study of Heat Transfer for the Optimization of Fin Sinks

Authors

  • J.M. Blanco Higher Technical School of Engineering University of the Basque Country / E.H.U. Calle Alameda de Urquijo, s / n, 48013, Bilbao, Spain
  • E. Armendáriz Multidisciplinary Center for Innovation and Technology of Navarra (CEMITEC) Polígono Mocholí Plaza Cein 4, 31110 Noain, Navarra, Spain
  • J. Esarte Multidisciplinary Center for Innovation and Technology of Navarra (CEMITEC) Polígono Mocholí Plaza Cein 4, 31110 Noain, Navarra, Spain

DOI:

https://doi.org/10.15377/2409-5826.2014.01.01.1

Keywords:

Efficiency, fins, heat transfer, conduction and convection, parametric study, Matlab, CFD.

Abstract

Fin heat sinks are the most widely used type of heat sink for cooling purposes nowadays where space is a key factor, such as for the cooling of electronic equipment. Improved cooling capacity and the lowest possible thermal resistance in the design optimization process of these sink geometries means that we should consider a number of variable parameters, which can involve tedious design processes that are almost impossible to approximate to a sufficient degree of accuracy without computer simulation tools. The principal parameters are the heat dissipation base area, fin size, shape and material and the heat transfer coefficient. Computer numerical simulation tools greatly assist the design process, allowing in turn a greater range and more accurate analysis of the problem itself. In this study, we develop a design tool called “Opti-fin†for a Matlab ® environment that allows the user to configure a fin on the basis of the material and the thermal heat that will be released. Our study also includes a realistic estimation of fluid (air) flows that control the temperature dependency of the fin. This tool has been validated by computational fluid dynamic simulations using ANSYS-FLUENT®, in which the results of the simulation and the actual triangular shaped fin showed a remarkable similarity.

Author Biography

J.M. Blanco, Higher Technical School of Engineering University of the Basque Country / E.H.U. Calle Alameda de Urquijo, s / n, 48013, Bilbao, Spain

Fluid Mechanics Department

References

Incropera FP, DeWitt DP. Fundamentals of Heat and Mass Transfer. New York, John Wiley and Sons 1996.

Kern DQ, Krauss AD. Extended Surface Heat Transfer. Mc. Graw-Hill. N.Y. 1972.

Cullen JM, Allwood JM, Borgstein EH. Reducing energy demand, What are the practical limits? Int J Environ Sci Technol 2011; 45(4): 1711-1718. http://dx.doi.org/10.1021/es102641n

Esarte J, Min G, Rowe DM. Modelling heat exchangers for thermoelectric generators, J Power Sources 2001; 72-76. http://dx.doi.org/10.1016/S0378-7753(00)00566-8

Çengel YA. Heat Transfer. A Practical Approach, 2nd Ed., McGraw-Hill, Boston 2003.

Dong-Kwon K. Thermal optimization of plate-fin heat sinks with fins of variable thickness under natural convection, Int J Heat Mass Transf 2012; 55(4): 752-761. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.10.034

Tae Hoon K, Kyu Hyung D, Dong-Kwon K. Closed form correlations for thermal optimization of plate-fin heat sinks under natural convection. Int J Heat Mass Transf 2011; 54(5- 6): 1210-1216. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.10.032

Hsin-Hsuan W, Yuan-Yuan H, Hsiang-Sheng H, Ping-Huey T, Sih-Li C. A practical plate-fin heat sink model, Appl Therm Eng 2011; 31(5): 984-992. http://dx.doi.org/10.1016/j.applthermaleng.2010.10.014

Prasher R. Thermal Interface materials. Historical perspective, status and future directions. Proceedings of the IEEE 2006; 98(8): 434-456.

Razelos P, Kakatsios X. Optimum dimensions of convectingradiating fins. Part I. longitudinal fins, Appl Therm Eng 2000; 20: 1161-1192. http://dx.doi.org/10.1016/S1359-4311(99)00089-7

Tafti DK, Wang G, Lin W. Flow transition in a multilouvered fin array, Int J Heat Mass Transf 2000, 43: 901-919. http://dx.doi.org/10.1016/S0017-9310(99)00190-8

Chung DDL. Materials for thermal conduction. Appl Therm Eng 2001, 21: 1593-1605. http://dx.doi.org/10.1016/S1359-4311(01)00042-4

Webb RL, Trauger P. Flow Structure in the Louvered Fin Heat Exchanger Geometry. Exp Therm and Fluid Sci 1991; 4: 205-217. http://dx.doi.org/10.1016/0894-1777(91)90065-Y

Rowe M. Thermoelectrics and its energy harvesting. CRC Press 2011; Vol. I.

Harper WB, Brown DR. Mathematical Equations for heat conduction in the fins of air-cooled engines. NACA Report 158, Washington 1922; pp. 679-708.

Kraus AD, Aziz A, Welty J. Extended surface heat transfer. Appl. Mech. Rev 2001; 54(5): 17-31. http://dx.doi.org/10.1115/1.1399680

Blanco JM, Mendía F, Sala JM, López LM. Tecnología energética. ETSII Bilbao ISBN: 84-95809-19-2, pp. 49-72, 2004.

Dong-Kwon K, Jaehoon J, Sung JK. Thermal optimization of plate-fin heat sinks with variable fin thickness. Int J Heat Mass Transf 2010; 53: 5988-5995. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.07.052

ANSYS (2010), Ansys Fluent R13 documentation.

Söylemez MS. On the optimum heat exchanger sizing for heat recovery. Energy Convers Manag 2000; 41: 1419-1427.

Culham JR, Muzychka YS. Optimization of plate fin heat sinks using entropy generation minimization. IEE Transactions on Components and Packaging Tech 2001; 24(2): 159-165. http://dx.doi.org/10.1109/6144.926378

Lee S. Optimum design and selection of heat sinks. Eleven IEE SEMI-THERM Symposium 1995: 48-54.

Downloads

Published

2014-10-17

How to Cite

1.
J.M. Blanco, E. Armendáriz, J. Esarte. A Parametric Study of Heat Transfer for the Optimization of Fin Sinks. J. Adv. Therm. Sci. Res. [Internet]. 2014Oct.17 [cited 2021Sep.26];1(1):3-8. Available from: https://www.avantipublishers.com/jms/index.php/jatsr/article/view/84

Issue

Section

Articles