Thermal Conductivity of Suspended Si Nanostructures: Design and Fabrication

Authors

  • Rodríguez-Viejo Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
  • L. Licea-Jiménez Centro de Investigación en Materiales Avanzados S. C. Unit Monterrey-PIIT 66600 Apodaca, N. L. Mexico
  • S.A. Pérez-García Centro de Investigación en Materiales Avanzados S. C. Unidad Monterrey-PIIT 66600 Apodaca, N. L. Mexico
  • J. Alvarez-Quintana GENES-Group of Embedded Nanomaterials for Energy Scavenging-CIMAV S.C

DOI:

https://doi.org/10.15377/2409-5826.2015.02.01.1

Keywords:

Si Nanostructures, Thermal Conductivity, Nanoscale Heat Transfer.

Abstract

It is presented a process for engineering suspended Si nanostructures in order to measure the thermalconductivity in Si thin films and nanowires based on standard photolithographic techniques. Unlike previous works wherethe nanostructure was typically grown ex situ, and then mechanically placed and contacted between the two microheaterswhich introduce a contact thermal resistance that difficult an easy interpretation of the experimental results byincreasing the uncertainty of the measured thermal conductance of the nanostructure; in this research, the nanostructureis defined from silicon-on-insulator wafers via FIB with the objective to minimize the thermal contact resistance betweenthe nanostructure under test and the heat sources. It has been demonstrated by experimental measurements that thissuspended device is well adapted for the measurement, control and analysis of the thermal conductivity of nanoscale Sithin films and nanowires. FIB micro-fabrication strategy could be used to obtain Si based nanostructures with very lowthermal conductivity which is a desirable characteristic in thermoelectric applications for thermal energy harvesting andsolid state refrigeration as well.

Author Biography

Rodríguez-Viejo, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

Nanomaterials and Microsystems Group. Physics Departmen

References

Prokes SM, Stephen A. Synthesis of Si nanowires for MEMS cantilever sensor applications. Nanosensing: Materials Dev. Proceedings SPIE. 2004; 5593: 88-100. http://dx.doi.org/10.1117/12.578765

Chen YT, Cho YH, Takama N, Löw P, Bergaud C, Kim BJ. Simple fabrication of Si nanowire and its biological application. J Physics: Conference Series. 2009; 152: 1-7.

Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J Heat Transfer 2003; 125: 881-888. http://dx.doi.org/10.1115/1.1597619

Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A. Thermal conductivity of individual silicon nanowires. App Phys Lett 2003; 83(14): 2934-2936. http://dx.doi.org/10.1063/1.1616981

Gewalt A, Kalkofen B, Lisker M, Burte EP. Epitaxial growth of Si nanowires by a modified VLS method using molten Ga as growth assistant. Mater Res Soc Symp Proc 2009; 1144: LL03-11.

Ju YS. Phonon heat transport in silicon nanostructures. Appl Phys Lett 2005; 87: 153106-1-3. http://dx.doi.org/10.1063/1.2089178

Hao Z, Zhinchao L, Lilin T, Zhimin T, Litian L, Zhijian L. Thermal conductivity measurements of ultra-thin single crystal silicon films using improved structure. 8th Inter. Confer. Solid-State Integ Circuit Tech Proc 2006: 2196-2198.

Liang LH, B Li B. Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys Rev B 2006; 73: 153303-1-4. http://dx.doi.org/10.1103/PhysRevB.73.153303

Asheghi M, Leung YK, Wong SS, Goodson KE. Phononboundary scattering in thin silicon layers. Appl Phys Lett 1997; 71(13): 1798-1780. http://dx.doi.org/10.1063/1.119402

Liu W, Asheghi M. Phonon-boundary scattering in ultrathin single-crystal silicon layers. Appl Phys Lett 2004; 84(19): 3819-3821. http://dx.doi.org/10.1063/1.1741039

Ju S, Goodson KE. Phonon scattering in silicon films with thickness of order 100 nm. Appl Phys Lett 1999; 74(20): 3005-3007. http://dx.doi.org/10.1063/1.123994

Cahill DG, Watson SK, Pohl RO. Lower limit to the thermal conductivity of disordered crystals. Phys Rev B 1992; 46(10): 6131-6140. http://dx.doi.org/10.1103/PhysRevB.46.6131

Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008; 451: 163-167. http://dx.doi.org/10.1038/nature06381

Martin P, Aksamija Z, Pop E, Ravaioli U. Impact of phononsurface roughness scattering on thermal conductivity of thin Si nanowires. Phys Rev Lett 2009; 102: 125503-1 to -4.

Downloads

Published

2015-01-15

How to Cite

1.
Rodríguez-Viejo, L. Licea-Jiménez, S.A. Pérez-García, J. Alvarez-Quintana. Thermal Conductivity of Suspended Si Nanostructures: Design and Fabrication. J. Adv. Therm. Sci. Res. [Internet]. 2015Jan.15 [cited 2021Sep.26];2(1):1-11. Available from: https://www.avantipublishers.com/jms/index.php/jatsr/article/view/211

Issue

Section

Articles