Selected Phenomena of Spontaneous Electric Noise

Authors

  • Hayk Asatryan, Eugen Grycko and Werner Kirsch

DOI:

https://doi.org/10.15377/2409-5761.2016.03.01.10

Keywords:

Stochastic process, Kirchhoff’s law, noise voltage, noise current.

Abstract

 Recently a modified Drude model of the valence electron gas in metals was investigated mathematically. The implications of this model suggest that the thermal noise voltage increases for example with the length of the metallic conductor. This observation prompted us to carry out some innovative experiments whose outcomes confirmed qualitatively the Drude model. We discuss some implications of this model in the light of the performed measurements.

References

Grycko E, Kirsch W, Könenberg M, Li J, Mühlenbruch T and Rentmeister J. Thermal noise in a modified Drude model. Int J Pure Appl Math 2009; 54(4): 551-561.

Grycko E, Kirsch W and Mühlenbruch T. Amplification of thermal noise by an electrostatic field. Int J Pure Appl Math 2010; 60(2): 187-192.

Grycko E, Kirsch W and Mühlenbruch T. Some quantum mechanical evidence for the amplification of thermal noise in an electrostatic field. Int J Pure Appl Math 2011; 69(4): 437-507.

Grycko E, Kirsch W and Mühlenbruch T. On the thermal voltage signal in a virtual nanoconductor. Int J Pure Appl Math 2013; 87(2): 247-260. http://dx.doi.org/10.12732/ijpam.v87i2.5

Grycko E, Kirsch W and Mühlenbruch T. On the thermal angular momentum of the electron gas. Seminarberichte Mathematik 2014; 86: 119-128.

Grycko E, Kirsch W and Mühlenbruch T. On the voltage and power indicators for thermal noise. Seminarberichte Mathematik, in print (2015).

Grycko E, Kirsch W and Mühlenbruch T. A circuit for generation, rectification and accumulation of noise voltages. Preprint, published under: www.fernuni-hagen.de/stochastik /forschung, (2015).

Downloads

Published

2016-10-28

How to Cite

Hayk Asatryan, Eugen Grycko and Werner Kirsch. (2016). Selected Phenomena of Spontaneous Electric Noise. Journal of Advances in Applied &Amp; Computational Mathematics, 3(1), 65–67. https://doi.org/10.15377/2409-5761.2016.03.01.10

Issue

Section

Articles