Analytical Study of Heat Transfer under Effect of Internal Heat Generation and Radiation over a Stretching Surface

Authors

  • M. Almas Florida International University

DOI:

https://doi.org/10.15377/2409-5761.2015.02.02.2

Keywords:

Homotopy analysis method (HAM), numerical method (NM), porous medium, suction and injection, internal heat generation

Abstract

Homotopy Analysis Method (HAM) is used to analytically study the heat transfer in a porous medium over a stretching surface with internal heat generation and radiation. The governing equations are transformed into a system of ordinary differential equations and then solved using HAM method. Effects of different physical parameters such as permeability, suction, Prandtl number, radiation and Heat generation have been studied on temperature and velocity fields. And also analytical results have been shown for local skin friction coefficient and the Nusselt number. The analytical solutions have been compared with numerical results which showed remarkable agreements.

Author Biography

M. Almas, Florida International University

Department of Mechanical and Materials Engineering

References

Sriramalu A, Kishan N and Anand RJ. Steady Flow and Heat Transfer of a Viscous Incompressible Fluid Flow through Porous Medium over a Stretching Sheet. J Energy Heat Mass Transfer 2001; 23: 483-495.

Subhas A and Veena P. Visco-Elastic Fluid Flow and Heat Transfer in Porous Medium over a Stretching Sheet. Int J Non-Linear Mech 1998; 33: 531-540. http://dx.doi.org/10.1016/S0020-7462(97)00025-5

Elbashbeshy EMA and Bazid MAA. Heat Transfer over a Continuously Moving Plate Embedded in a Non-Darcian Porous Medium. Int J Heat Mass Transfer 2000; 43: 3087- 3092. http://dx.doi.org/10.1016/S0017-9310(99)00359-2

Elbashbeshy EMA and Bazid MAA. Heat Transfer over an Unsteady Stretching Surface with Internal Heat Generation. Appl Math Comput 2003; 138(3): 239-245. http://dx.doi.org/10.1016/S0096-3003(02)00106-6

Elbashbeshy EMA and Bazid MAA. Heat Transfer over a Stretching Surface with Internal Heat Generation. Can J Phys 2003, 81(4): 699-703. http://dx.doi.org/10.1139/p02-033

Pop T and Na TY. Free Convection Heat Transfer of Non- Newtonian Fluids along a Vertical Wavy Surface in a Porous Medium. Proc 4th lnt Symposium Heat Transfer 1996, Beijing, China; 452.

He JH. Variational method a kind of non-linear analytical technique: some examples. Int J Non-Linear Mech 1999; 3414: 699-708. http://dx.doi.org/10.1016/S0020-7462(98)00048-1

Adomian G. A review of the decomposition method and some recent results for nonlinear equation. Math Comput Model 1992; 13(7): 17. http://dx.doi.org/10.1016/0895-7177(90)90125-7

Nayfeh AH. Perturbation methods. New York: Wiley; 2000. http://dx.doi.org/10.1002/9783527617609

Ganji DD. The application of He’s homotopy perturbation method to nonlinear equation arising in heat transfer. Physics letters A 2006; 355: 337-341. http://dx.doi.org/10.1016/j.physleta.2006.02.056

Liao SJ. The proposed homotopy analysis technique for the solution of nonlinear problems. PhD Dissertation Shanghai Jiao Tong University; 1992.

Liao SJ. Boundary element method for general nonlinear differential operators Eng Anal Bound Elem 1997; 202: 91-9. http://dx.doi.org/10.1016/S0955-7997(97)00043-X

Liao SJ. An approximate solution technique not depending on small parameters: a special example. Int J Non-Linear Mech 1995; 303: 371-380. http://dx.doi.org/10.1016/0020-7462(94)00054-E

Liao SJ. Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman & Hall/CRC Press, Boca Raton 2003. http://dx.doi.org/10.1201/9780203491164

Hayat T and khan M. Homotopy solutions for generalized second-grade fluid past porous plate. Nonlinear Dynamics 2005; 42: 395-405. http://dx.doi.org/10.1007/s11071-005-7346-z

Fakhari A, Domairry G and Ebrahimpour. Approximate explicit solutions of nonlinear BBMB equations by homotopy analysis method and comparison with the exact solution. Phys Letter A 2007; 368: 64-8. http://dx.doi.org/10.1016/j.physleta.2007.03.062

Rashidi MM, Domairry G and Dinarvand S. Solution of the laminar viscous flow in a semi-porous channel in the presence of a uniform magnetic field by using the homotopy analysis method. Commun Nonlinear Sci Numer Simulat 2007; 14: 708-717. http://dx.doi.org/10.1016/j.cnsns.2007.09.015

Tan Y and Abbasbandy S. Homotopy analysis method for quadratic Riccati differential equation. Commun Nonlinear Sci Numer Simulat 2008; 13(3): 539-46. http://dx.doi.org/10.1016/j.cnsns.2006.06.006

Domairry G and Fazeli M. Homotopy Analysis Method to Determine the Fin Efficiency of Convective Straight Fins with Temperature Dependent Thermal Conductivity. Communications in Nonlinear Science and Numerical Simulation 2009; 14(2): 489-499. http://dx.doi.org/10.1016/j.cnsns.2007.09.007

Domairry G and Nadim N. Assessment of homotopy analysis method and homotopy perturbation method in non-linear heat transfer equation. International Communication Heat mass transfer 2008; 35(1): 93-102. http://dx.doi.org/10.1016/j.icheatmasstransfer.2007.06.007

Ahmer M and Asif A. Analytic solution of generalized threedimensional flow and heat transfer over a stretching plane wall. Int Commun Heat Mass Transfer 2006; 33(10): 1243-1252. http://dx.doi.org/10.1016/j.icheatmasstransfer.2006.08.001

Ghasemi E, McEligot DM, Nolan KP, Crepeau J, Tokuhiro A and Budwig RS. Entropy generation in a transitional boundary layer region under the influence of freestream turbulence using transitional RANS models and DNS. Int Comm Heat Mass Transf 2013; 41: 10-16. http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.11.005

Ghasemisahebi E. Entropy generation in transitional boundary layers. LAP LAMBERT Academic Publishing 2013.

Ghasemi E, Soleimani S and Lin CX. Secondary reactions of turbulent reacting flows over a film-cooled surface. Int Com Heat Mass Transf 2014; 55: 93-101. http://dx.doi.org/10.1016/j.icheatmasstransfer.2014.04.007

Ghasemi E, McEligot DM, Nolan KP, Crepeau J, Siahpush A, Budwig RS and Tokuhiro A. Effects of adverse and favorable pressure gradients on entropy generation in a transitional boundary layer region under the influence of freestream turbulence. Int J Heat Mass Transf 2014; 77: 475-488. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.05.028

Ghasemi E, Soleimani S, Barari A, Bararnia H and Domairry G. Influence of Uniform Suction/Injection on Heat Transfer of MHD Hiemenz Flow in Porous Media. J Eng Mech 2012; 138(1): 82-88. http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000301

Ganji DD, Bararnia H, Soleimani S and Ghasemi E. Analytical solution of the magneto-hydrodynamic flow over a nonlinear stretching sheet. Mod Phys Lett B 2009; 23: 2541- 2556. http://dx.doi.org/10.1142/S0217984909020692

Bararnia H, Ghasemi E, Soleimani S, Barari A and Ganji DD. HPM-Pade Method on Natural Convection of Darcian Fluid about a Vertical Full Cone Embedded in Porous Media. J Porous Media 2011; 14(6): 545-553. http://dx.doi.org/10.1615/JPorMedia.v14.i6.80

Moghimi SM, Domairry G, Soleimani S, Ghasemi E and Bararnia H. Application of homotopy analysis method to solve MHD Jeffery–Hamel flows in non-parallel walls. Adv Eng Soft 2011; 42(3): 108-113. http://dx.doi.org/10.1016/j.advengsoft.2010.12.007

Bararnia H, Ghasemi E, Soleimani S, Ghotbi AR and Ganji DD. Solution of the Falkner–Skan wedge flow by HPM–Pade’ method. Adv Eng Soft 2012; 43(1): 44-52. http://dx.doi.org/10.1016/j.advengsoft.2011.08.005

Jalaal M, Nejad MG, Jalili P, Esmaeilpour M, Bararnia H, Ghasemi E, Soleimani S, Ganji DD and Moghimi SM. Homotopy perturbation method for motion of a spherical solid particle in plane couette fluid flow. Comput Math Appl 2011; 61(8): 2267-2270. http://dx.doi.org/10.1016/j.camwa.2010.09.042

Downloads

Published

2015-12-31

How to Cite

Almas, M. (2015). Analytical Study of Heat Transfer under Effect of Internal Heat Generation and Radiation over a Stretching Surface. Journal of Advances in Applied &Amp; Computational Mathematics, 2(2), 47–57. https://doi.org/10.15377/2409-5761.2015.02.02.2

Issue

Section

Articles