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Abstract: In the present paper an overview of existing results on matrix transforms of summability and absolute 
summability domains of matrix methods by factorable matrices is presented. Under the notion “multiplicative matrix” we 
consider a lower triangular matrix 

  
M = (m

nk
) , where 

 
m

nk
= r

n
v

k
 with 

  
r
n

, v
k
!C.  
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1. INTRODUCTION 

In this paper matrix transforms of sequence spaces 
by factorable matrices are investigated. Throughout in 
the present paper by M we denote a factorable matrix; 
i.e., 

  
M = (m

nk
)  is a lower triangular matrix, where, 

  
m

nk
= r

n
v

k
,  

  
k ! n;  

  
r
n
,v

k
!C.  

The set of all factorable matrices we denote by F. 
Also throughout this paper, we assume that indices and 
summation indices run from 0 to !  unless otherwise 
specified. Let !  be the set of all sequences with real 
or complex entries,  m ! "  the set of all bounded 
sequences,  c ! m  the set of all convergent sequences, 

  
c

0
! c  the set of all null sequences, 

  

cs := x = (x
k
) : ! lim

n

x
k

k=0

n

"
#
$
%

&%

'
(
%

)%
,  

  

l := x = (x
k
) : x

k

k=0

n

! < "
#
$
%

&%

'
(
%

)%
,  

  
bv := x = (x

k
) : (!x

k
) "l{ } ,  

  
!x

k
:= x

k
" x

k+1
.   

Moreover, let 
  
A = (a

nk
) be a matrix with real or 

complex entries and; 

  

A
n
x := a

nk
x

x

k

! ,  
  
Ax := A

n
x( )  

for every 
  
x = (x

k
) !" .  Let 

  
X ,Y be some subsets of 

! and; 

  
X

A
:= x = (x

k
) !" : Ax !X{ } ,  
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( X ,Y ) := A = (a

nk
) : Ax !Y for every x !X{ }.  

A matrix  A  is called reversible if the infinite system 
of equations 

 
z

n
= A

n
x  has a unique solution for each 

sequence 
  
(z

n
) !c, and normal if  A  is lower triangular 

with 
  
a

nn
! 0.  Necessary and sufficient conditions for 

 
Y ! X

A
 if 

  
X ,Y = c,c

0
,cs, l,bv  have been widely 

investigated; referring only to monographs [1], [12] - 
[15] and [37], a good overview has been given also in 
[35]. Also the inclusion 

 
X

A
! Y

B
 for 

  
X ,Y = c,c

0
,cs, l,bv  

( B  is a matrix with real or complex entries) has been 
well investigated for reversible or normal ;A see also 
[1], [12] - [15] and [37]. Necessary and sufficient 
conditions for a matrix 

  
D !( X

A
,Y

B
)  if 

  
X ,Y = c,c

0
,cs, l,bv  in case of reversible or normal  A  

have been presented, for example, in papers [2], [5]- 
[7], [10], [11], [36], and in textbook [1]. Often these 
necessary and sufficient conditions are difficult to 
check. Due to the simple structure, better controlled 
conditions can be obtained for a factorable matrix   M .  
In this paper, we give an overview of the known results 
on matrix transformations by factorable matrices; we do 
not consider the topological properties of factorable 
matrices. Note that the topological properties of 
factorable matrices can be found, for example, from 
papers [16]-[26], [28], [29], [31-34] and [38].  

The paper is organized as follows. In Section 2, 
some examples of factorable matrices have been 
introduced. In Section 3, the summability domain 

 
c

M
 

for  M !F  has been described. In Section 4, 
necessary and sufficient conditions for 

 
l
A
! cs

M
 and 

 
l
A
! l

M
 for a normal matrix A  have been presented. 

In Section 5, necessary and sufficient conditions for 

  
M !(c

A
,c

B
) , if A  is the Cesàro method  C

!  of order 

 
!;  

  
! "C;! # $1,$2,... , have been described. 
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2. SOME WELL-KNOWN SUMMABILITY METHODS 
DEFINED BY FACTORABLE MATRICES 

First we introduce the class of normal factorable 
matrices.  

Theorem 2.1 ([9], p. 2-3). A normal matrix
  
A = (a

nk
)  

is factorable if and only if its inverse is bidiagonal. 

Proof. Necessity. Let A be a normal factorable 
matrix; i.e., 

  
a

nk
= r

n
v

k
.  Then it is easy to find that 

  
A
!1

= (a
nk

!1)  is a normal matrix with; 

  

a
nk

!1
=

1 / r
n
v

n
     if k = n,

!1 / r
n!1

v
n
     if k = n !1,

0              otherwise.

"

#
$

%
$

      (2.1) 

Hence   A
!1  is bidiagonal. 

Sufficiency. Let A be a normal matrix with a 
bidiagonal inverse 

  
A
!1

= (a
nk

!1);  i.e.,  

  
a

nn

!1
= "

n
,  

  
a

n,n!1

!1
= "

n!1
(n # 1),  

  
a

nk

!1
= 0  for   0 ! k < n "1.  

Then 
  
a

nn
= 1 /!

n
,  and; 

  
a

n,n!1
a

n!1,n!1

!1
+ a

nn
a

n,n!1

!1
= 0.  

This implies; 

  

a
n,n!1

= !
"

n!1

#
n!1

#
n

, 

for   n ! 1 . Now with the help of mathematical induction 
it is possible to show that; 

  

a
nk

= (!1)n! k

"
j!1

j= k+1

n

#

$
j

j= k

n

#

= (!1)n

"
j

j=0

n!1

#

$
j

j=0

n

#
(!1)k

$
j

j=0

k!1

#

"
j

j=0

k!1

#

 

for   k ! n "1  and   n ! 1.  Thus A is factorable.  

Further we introduce some well-known matrix 
methods of summability, which are defined by 
factorable matrices. 

2.1. A weighted Mean Method of Riesz 
 
(R, p

k
)  

A summability method 
  
(R, p

k
)  is defined by a lower 

triangular infinite matrix 
  
A = (a

nk
)  with 

  
a

nk
= p

k
/ P

n
, 

where; 

  
p

0
> 0,  

  
p

k
! 0  and 

  

P
n
= p

k

k=0

n

! .  

It is easy to see that 
  
(R, p

k
)  is a special case of a 

factorable matrix obtained by setting 
 
v

k
= p

k
 and 

  
r
n
= 1 / P

n
.  

2.2. Method of Cesàro  C
1  of Order One 

The method   C1  is a special case of 
  
(R, p

k
) , where 

  
p

k
= 1;  i.e., 

  
C

1
= (a

nk
)  is a lower triangular infinite 

matrix with, 

  
a

nk
=

1

n +1
; k ! n.  

2.3. p-Cesàro Method 
 
(C, p)  of Order One 

  
(C, p)  is defined by a lower triangular infinite matrix 

  
A = (a

nk
)  with (see [16], p.127), 

  

a
nk

=
1

(n +1) p
; k ! n , 

  
p > 0.  

Indeed, setting 
  
v

k
! 1  and 

  
r
n
= 1 / (n +1) p ,  we see 

that 
  
(C, p)  is factorable. 

2.4. Generalized Cesàro Method 
 
(C,1, i)  of Order 

One 

  
(C,1, k)  is defined by a lower triangular infinite 

matrix 
  
A = (a

nk
)  with (see [16], p.127-128), 

  
a

nk
=

1

n + i
; k ! n, i > 0.  

Taking 
  
v

k
! 1  and 

  
r
n
= 1 / n + i,  we see that 

  
(C,1, i)  

is factorable. 

2.5. H-J Generalized Hausdorff Matrices 

Let 
  
(!

n
)  be a strictly increasing sequence of real 

numbers satisfying the properties, 
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0 ! "

0
< "

1
< ... < "

n
< ... ,  

  

lim
n

!
n
= " , 

  

1

!
nn=1

"

# = ".  

Such a sequence 
  
(!

n
)  we shall call admissible. Let 

  
(µ

n
)  be a sequence of real numbers. The generalized 

Hausdorff matrix, shortly H-J matrix, is defined by 

  
H = (h

nk
),   

  
h

nk
= !

k+1
...!

n
[µ

k
,...,µ

n
] , 

  
k ! n,  

where [ ] is the divided difference defined by; 

  

[µ
k
,µ

k+1
] :=

µ
k
! µ

k+1

"
k+1

! "
k

 

and, 

  

[µ
k
,...,µ

n
] :=

[µ
k
, ...,µ

n!1
]! [µ

k+1
,...,µ

n
]

"
n
! "

k

,  

with the understanding that the product 
  
!

k+1
...!

n
= 1  

if
 

k = n  (see [8-9]). 

It has been shown in [9] that under certain 
conditions, a conservative (or regular) H-J matrix is 
factorable.  

Let us remember that a matrix A is said to be 
conservative if

 
Ax !c  for every

  
x = (x

n
) !c,  and 

regular if 
  

lim
n

A
n
x = lim

n

x
n
 for every

  
x !c.  It is known 

(see [8-9] that an H-J matrix is conservative if and only 
if there exists a function of bounded variation !  over 

 
0;1!" #$ , such that; 

  

d!(x)

0

1

" < #,          (2.2) 

where the integral is a Riemann-Stieltjes one. 
Moreover, 

  

µ
n
= x

!
n

0

1

" d#(x).  

Theorem 2.2 ([9], p. 3-6). Let H be a conservative 
H-J matrix with 

 
!

0
= 0.  Then H is factorable if and  

only if; 

  

µ
n
=

a

!
n
+ a

, where 
  

a =
µ

1
!

1

1" µ
1

,  

or 
 
µ

0
= 1,

  
µ

n
= 0  for all

  
n > 0.  

Theorem 2.3 ([9], p. 6-7). Let H be a normal 
conservative H-J matrix with 

 
!

0
> 0.  Then H is 

factorable if and only if; 

  

µ
n
=

µ
0
b

!
n
" !

0
+ b

,  where 
  

a =
µ

1
(!

1
" !

0
)

µ
0
" µ

1

> !
0
.  

2.6. E-J Matrices 

E-J matrix is defined by 
  
E

(! )
= (e

nk

(! ) ),  where (see 
[8-9]; 

  

e
nk

(! )
=

n +!
n " k

#

$%
&

'(
)n" kµ

k
, ! > 0;  

  
!µ

k
= µ

k
" µ

k+1
 and 

  
!

n+1µ
k
= !(!nµ

k

) . 

Necessary and sufficient condition for an E-J matrix 
to be conservative is the existence of a function of 
bounded variation !  over 

 
0;1!" #$ , such that (2.2) is 

satisfied. For the E-J matrices the diagonal entries take 
the form ([9], p.7), 

  

e
nn

(! )
= x

n+!

0

1

" d#(x).  

It is easy to see that the E-J matrix is the special 
case of the H-J matrix with 

  
!

n
= n +".  

Theorem 2.4 ([9], p. 6-7). Let 
  
E

(! )
= (e

nk

(! ) )  be a 

normal conservative E-J matrix. Then   E
(! )  is 

factorable if and only if; 

  
e

nn

(! )
=

µ
0
c

n + c
,  where

  

c =
µ

1

µ
0
! µ

1

.  

3. SUMMABILITY DOMAINS OF FACTORABLE 
MATRICES  

In this section we consider factorable matrices with 
nonnegative entries; i.e., we consider the subset 

 
F

+
! F  defined as follows: 

  
F

+ := M = (r
n
v

k
) !F : v

0
, r

n
> 0,v

k
" 0, k = 1,2,...{ }.  

We describe the summability domains of 
 

M !F
+  

via 
  
(R, p

k
).  For this purpose for each factorable matrix 

  
M = (r

n
v

k
) !F  we use its associated Riesz matrix 

  
(R,v

k
).  

First we present some auxiliary notions and results. 
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Lemma 3.1 ([13], Theorem 2.3.7 or [35], 
Propositions 11 and 23). A matrix 

  
A = (a

nk
)  is 

conservative if and only if; 

there exist finite limits 
  
lim

n

a
nk

:= s
k
,      (3.1) 

there exist finite limits 
  

lim
n

a
nk

k

! := t,      (3.2) 

  

a
nk

k

! = O(1).  

A matrix A is regular if and only if conditions (3.1) – 
(3.3) are satisfied and 

  
s

k
! 0 ,   t = 0.  A matrix A is 

regular for 
  
c

0
 if and only if conditions (3.1) and (3.3) 

are satisfied and 
  
s

k
! 0.  

A matrix 
  
A = (a

nk
) is said to be coercive if 

  
m ! c

A
.  

Lemma 3.2 ([13], Theorem 2.4.1 or [35], 
Proposition 10). A matrix 

  
A = (a

nk
)  is coercive if and 

only if conditions (3.1) and (3.3) are fulfilled and  

  

lim
n

a
nk

! s
k

k

" = 0.  

Lemma 3.3 ([13], p. 51). A coercive matrix cannot 
be regular.  

From Lemma 3.1 it is easy to conclude that 

 
M !F

+  is conservative if and only if there exist the 
finite limits; 

  
lim

n

r
n

:= r,  
  
lim

n
r
n
V

n
:= q;

  

V
n

:= v
k

k=0

n

! ,  

and 
 

M !F
+  is regular if 

  
r = 0  and 

  
q = 1.  

A conservative matrix 
  
A = (a

nk
) is said to be 

coregular if; 

  

!( A) := lim
n

a
nk

k

" # lim
n

a
nk

k

" $ 0,  

and conull if 
  
!( A) = 0.  

Lemma 3.4 A conservative matrix 
  
M = (r

n
v

k
) !F

+  
is coregular if and only if 

  
r = 0  and 

  
q ! 0.  

Proof. Necessity. Let 
  
r = 0  and 

  
q ! 0.Then 

obviously 
  
!( M ) " 0.  

Sufficiency. Let 
  
!( M ) " 0.  Then; 

  

lim
n

r
n
V

n
! lim

n

r
n( )

k

" v
k

 

or 

  

lim
n

r
n
V

n
! r lim

n

V
n
.        (3.3) 

If 
  
r ! 0,  then there exists the finite limit 

  
lim

n

V
n
,  

since, due to conservativity of M, 
  

lim
n

r
n
V

n
 exists. 

Hence, 
  
lim

n

r
n
V

n
= r lim

n

V
n
,  which is in contradiction with 

(3.3). Thus 
  
r = 0  and

  
q = lim

n
r
n
V

n
! 0.  

We note that Lemma 3.4 was given in [27] without 
proof. 

Theorem 3.5 ([38], p. 380). A conservative matrix 

  
M = (r

n
v

k
) !F

+  is either coregular or coercive. 

Proof. If 
  
q = lim

n
r
n
V

n
= 0,  then, 

  

r
n
= r

n
V

n
!

1

V
n

" r
n
V

n
!

1

V
0

# 0.  

This implies that  M  is coercive. 

If 
  
q = lim

n
r
n
V

n
! 0  and 

  
r = lim

n

r
n
= 0,  then M is 

coregular by Lemma 3.4. If 
  
q ! 0  and   r ! 0,  then 

  

lim
n

V
n

:= V < !.  Hence 
  
lim

n

(r
n
! r)V

n
= 0 "V = 0.  

Therefore  M is coercive by Lemma 3.2. 

Theorem 3.6 ([38], p. 380-381). Let 

  
M = (r

n
v

k
) !F

+  be conservative. Then the following 
assertions hold: 

(i) 
  
c

( R,v
k

)
! c

M
 and;  

  
lim

n
M

n
x = q lim

n
(R,v

k
)

n
x        (3.4) 

for every 
  
x !c

( R,v
k

)
.  

(ii) If 
  
v

k
! 0  for infinite numbers of indices k, then 

  
c

M
! c

( R,v
k

)
 if and only if 

  
q ! 0.  

Proof. (i) As M is conservative and, 

  

M
n
x = r

n
v

k
x

k

k=0

n

! = r
n
V

n
"

1

V
n

v
k
x

k

k=0

n

! = r
n
V

n
(R,v

k
)

n
x   (3.5) 
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for every 
  
x !c

( R,v
k

)
,  then 

  
x !c

M
.  Moreover, relation 

(3.4) holds for every 
  
x !c

( R,v
k

)
 by (3.5). 

(ii) If 
  
q = lim

n
r
n
V

n
! 0,  then the inclusion 

  
c

M
! c

( R,v
k

)
 

follows from (3.5). Assume that 
  
q = 0.  We show 

that then 
  
c

M
! c

( R,v
k

)
.  Let 

  
(n

i
)

 
i !N( )  be the set 

of indices, such that 
  
v

n
i

! 0  and 
  
v

n
= 0  for 

  
n !(n

i
).  Let; 

        
  
k

i
:= min n

i
! " < n

i+1
: r

"
= max r

k
: n

i
! k < n

i+1{ }{ }.  

Now we define inductively a sequence 
  
x = (x

n
) !c

M
 

by setting 
  
x

0
:= 1  and; 

  

x
n

:=

1

v
n

V
k

i

r
k

i

! v
k
x

k

k=0

n!1

"
#

$

%
%

&

'

(
(

if n = n
i
 for some i )N ,

0 if n * n
i
: i )N{ }.

+

,
-
-

.
-
-

 

Then we obtain, 

  

M
n

i

x = r
n

i

V
k

i

r
k

i

! v
k
x

k

k=0

n
i
!1

" + v
k
x

k

k=0

n
i
!1

"
#

$

%
%

&

'

(
(
=

r
n

i

r
k

i

V
k

i

r
k

i

 (3.6) 

for every   i !N .  As 
  

lim
n

r
n
V

n
= 0  and 

  
V

n
! v

0
> 0,  then 

  r = 0.  This implies 
  
r
n

i

/ r
k

i

= O(1),  since rn>0. Hence 

  

lim
i

M
n

i

x = 0  by (3.6). For 
  
n

i
< n < n

i+1
 we have; 

  

M
n
x = r

n
i

v
k
x

k

k=0

n
i

! =
r
n

r
n

i

M
n

i

x =
r
n

r
n

i

r
n

i

r
k

i

V
k

i

r
k

i

=
r
n

r
k

i

V
k

i

r
k

i

.  

Consequently 
  

lim
i

M
n
x = 0.  On the other hand, 

  

(R,v
k
)

k
i

x =
1

V
k

i

r
k

i

!

r
k

i

r
k

i

V
k

i

r
k

i

=
1

V
k

i

r
k

i

, 

by (3.5). Therefore 
  
lim

n

(R,v
k
)

k
i

x = !; i.e., 
  
x !c

( R,v
k

)
.So 

  
c

M
! c

( R,v
k

)
.  

As   r = 0  and 
  
q = 1  for a regular method 

  
M = (r

n
v

k
) !F

+ ,  then from Theorem 3.6 we 
immediately obtain the following result. 

Corollary 3.7. Let 
  
M = (r

n
v

k
) !F

+  be regular and 

  
v

k
! 0  for infinite numbers of indices k. Then 

  
c

M
= c

( R,v
k

)
.  

Theorem 3.8 ([38], p. 381). Let 
  
M = (r

n
v

k
) !F

+  be 
conservative. Then the following statements hold: 

(i) If M is coregular, then 
  
(R,v

k
)  is regular. 

(ii) If 
  
(R,v

k
)  is regular, then M is regular for 

  
c

0
.  

Proof. (i) As 
  
r = 0,  

  
q ! 0  and,  

  

V
n
= r

n
V

n
!

1

r
n

,  

then 
  
lim

n

V
n
= !; i.e., 

  
(R,v

k
)  is regular. 

(ii) As 
  

lim
n

V
n

 and M is conservative, then we 

obtain 
  

r = lim
n

r
n
= lim

n

1

V
n

! lim
n

r
n
V

n
= 0;  

i.e., M is regular for 
  
c

0
.  

Theorem 3.9 (cf. [38], Proposition 2.5). Let 

  
M = (r

n
v

k
) !F

+  be conservative. Then the following 
statements hold: 

(i) If 
  
(R,v

k
)  is coercive, then M is regular coercive. 

(ii) If 
  
r ! 0,  then 

  
(R,v

k
) is coercive. 

(iii) If 
  
r = 0,  then 

  
(R,v

k
) can be both either coercive 

or regular. 

Proof. (i) As 
  

V = lim
n

V
n
= !  for regular 

  
(R,v

k
)  

and coercive 
  
(R,v

k
)  cannot be regular by Lemma 3.3, 

then  V < !  for coercive 
  
(R,v

k
).  This implies that; 

  
lim

n

(r
n
! r)V

n
= 0 "V = 0.        (3.7) 

Hence, M is coercive by Lemma 3.2. 

(ii) As M is conservative, then there exists the limit 

  
q = lim

n
r
n
V

n
< !  by Lemma 3.1. Therefore, due 

to
  
r ! 0  and 

  
v

0
> 0, v

k
! 0,  we obtain that there 

exists the limit 
  

V = lim
n

V
n

 with   0 ! V < ".  This 

implies the existence of the finite limit 

  

lim
n

1

V
n

=
1

V
.  Hence (3.7) is fulfilled for 

  
r
n
= 1 / V

n
.Consequently 

  
(R,v

k
) is coercive by 

Lemma 3.2. 
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(iii) Let 
  
r
n

:= 1 / (n +1)2.  If 
  
V < !,  then both M and 

  
(R,v

k
)  are coercive. If, for example, 

  
v

k
! 1,  then 

M is coercive and 
  
(R,v

k
)  is regular. 

Remark 3.10. From the proof of Theorem 3.9, we 
can conclude that the assumption of coercivity of M in 
Proposition 2.5 of [38] is redundant. 

Now we describe conservative matrices which are 
stronger than a given factorable matrix. We remember 
that a matrix B is said to be stronger than matrix A if 

  
c

A
! c

B
.  

Theorem 3.11 ([38], Theorem 2.7). Let 

  
M = (r

n
v

k
) !F

+  be coregular with 
  
v

k
> 0.  Then a 

conservative matrix B is stronger than M if and only if; 

(i) 
  

b
nk

v
k

!

"
#

$

%
& 'c

0
 for every n, 

(ii) 
  

V
k

b
nk

v
k

!
b

n,k+1

v
k+1k

" = O(1).  

Proof. (i) Using Theorem 3.8 (i) we obtain that 

  
(R,v

k
)  is regular. In addition, 

  
c

M
= c

( R,v
k

)
 by Theorem 

3.6. Now the assertion of the theorem follows from 
Theorem 3.2.8 of [13].  

From Theorem 3.11 and Corollary 3.2.10 of [13] we 
immediately get the following result. 

Corollary 3.12 (cf. with Theorem 1 from [27]). Let 

  
M = (r

n
v

k
) !F

+  be coregular with 
  
v

k
> 0.  Then 

 
c

M
= c  

if and only if 
  

V
n

/ v
n( )!m.  

Further we describe the summability domains of 

 
M !F

+  via   C
1
.  For doing it, we need some notions 

and auxiliary results. We remember that matrices A 
and B are said to be consistent if 

  
lim

n
B

n
x = lim

n
A

n
x  

for every
  

x !c
A
" c

B
.  

Lemma 3.13 ([13], Theorem 2.6.2). Let A be a 
normal matrix and B a triangular matrix. Then B is 
stronger than and consistent with A if and only if 

  
C = BA

!1  is regular.  

Theorem 3.14 (cf. [30], Theorem 2.1). Let 

  
M = (r

n
v

k
) !F

+ be a regular normal matrix, where the 

sequence 
  
(v

k
)  is monotone and;  

  
m < (n +1)r

n
v

n
< M , 

for some positive constants m and M. 
Then

  
c

M
= c

C
1 , and M and 

  
C

1  are consistent. 

Proof. First we show that 
  
c

C
1 ! c

M
. Let 

  
C

!1
= (c

nk
)  

be the inverse matrix of 
  
C

1
.  Then with the help of (2.1) 

we obtain; 

  

c
nk

=

n +1     if n = k,

!(n +1)     if k = k +1,

0              otherwise.

"

#
$

%
$

 

Let 
  

D = MC
!1 := (d

nk
).  Then for 

 
k < n  we have, 

  

d
nk

= r
n
v

j

j= k

n

! c
jk
= (k +1)r

n
(v

k
" v

k+1
),  

  
d

nn
= (n +1)r

n
v

n
 and 

  
d

nk
= 0  for 

  
k > n.  

Therefore 
  
lim

n
d

nk
= 0,  since   r = 0  by Lemma 3.1. 

Assume that 
  
(v

k
)  is non-increasing. Then, 

  

d
nk

k=0

n

! = d
nk

k=0

n

! = (n +1)r
n
v

n
+ r

n
(k +1)(v

k

k=0

n

! " v
k+1

)  

  

= (n +1)r
n
v

n
+ r

n
(k +1)v

k

k=0

n!1

" ! (k +1)v
k+1

k=0

n!1

"
#

$

%
%

&

'

(
(

 

  

= (n +1)r
n
v

n
+ r

n
v

0
! nv

n
+ ((k +1)v

k

k=0

n!1

" ! kv
k
)

#

$

%
%

&

'

(
(

 

  

= r
n
v

n
+ r

n
v

0
+ r

n
v

k

k=0

n!1

" = r
n
v

0
+ r

n
V

n
. 

This implies by Lemma 3.1 that D is regular, since 

  
q = 1  and   r = 0  by the regularity of M. 

Assume that 
  
(v

k
)  is non-decreasing. Then, 

  

d
nk

k=0

n

! = (n +1)r
n
v

n
+ r

n
(k +1)(v

k+1

k=0

n

! " v
k
)  

  

= (n +1)r
n
v

n
+ r

n
(k +1)v

k+1

k=0

n!1

" ! (k +1)v
k

k=0

n!1

"
#

$

%
%

&

'

(
(
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= (n +1)r
n
v

n
+ r

n
nv

n
! r

n
v

0
+ r

n
(kv

k
! (k +1)v

k

k=0

n!1

" )  

  

O(1) + o(1) ! r
n

v
k

k=0

n!1

" = O(1).  

As,  

  
De = MC

!1
e = Me; e = (1,1,...)  

and M is regular, then 
  
lim

n
D

n
e = 1  by Lemma 3.1. 

Hence D is regular by Lemma 3.1. Therefore 
  
c

C
1
! c

M
 

by Lemma 3.13. 

For showing 
  
c

M
! c

C
1 it is sufficient to prove that 

  D
!1  is regular. The proof of this statement we refer to 

[30], p. 589 -591. Thus, by Lemma 3.13,
  
c

M
= c

C
1 , and 

M and 
  
C

1  are consistent. 

4. INCLUSION THEOREMS 

In this section we study the transformations of 
absolute summability domains of normal matrices by 
factorable matrices. Let; 

  
F

v

cs := M !F : (r
n
) !cs{ } ,  

  
F

v

l := M !F : (r
n
) !l{ } , 

for a given sequence 
  
v = (v

k
).  

Lemma 4.1 ([3], p. 405). Let A be a normal matrix, 
where 

  
e

0
= (1,0,0,...) !l

A
.  

(i) If 
 
l
A
! cs

M
 for 

  
M !F ,  then 

  
(r

n
) !cs.  

(ii) If 
 
l
A
! l

M
 for 

  
M !F ,  then 

  
(r

n
) !l.  

Proof follows from the equality 
  
M

n
e

0
!r

n
v

0
.  

Theorem 4.2 ([3], Theorem 2.2). Let
  

A = (a
nk

)  be a 

normal matrix and 
  

A
!1

= (c
nk

)  its inverse matrix. Then 

 
l
A
! l

M
 for every 

 
M !F

v

l  if and only if; 

  

v
n

n= l

m

! c
nl
= O(1).         (4.1) 

Proof. For every 
  
x = (x

k
) !l

A
 we can write; 

,

k

k kl l

n l

x c z

=

=!  

where 
  

z
l
= A

l
x.  Therefore for  M !F  and for every 

 
x !l

A
 we obtain; 

  
M

n
x = r

n
L

n
(z),         (4.2) 

where, 

  

L
n
(z) := v

k
c

kl

k= l

n

!
"

#
$
$

%

&
'
'

l=0

n

! z
l
.  

As A is normal, then for every 
  
z = (z

l
) !l  there 

exists 
 
x !l

A
 such that 

  
A

l
x = z

l
.  This implies by (4.2) 

that  Mx !l  for each 
 
M !F

v

l  and each 
 
x !l

A
 if and 

only if 
  
(r

n
L

n
(z)) !l  for every 

  
(r

n
) !l.  The relation 

  
(r

n
L

n
(z)) !l  holds if and only if; 

  
L

n
(z) = O

z
(1)         (4.3) 

for each   z !l.  As; 

  

L
n
(z) = g

nl
z

l

l=0

n

! ,  where 
 

g
nl
= v

k
c

kl

k= l

n

! , 

for every 
  
z !l,  then (4.3) holds for every  z !l  if and 

only if 
  
G = (g

nk
)  is a transform from l into m. By 

Proposition 6 of [35], G transforms l into m if and only if 
condition (4.1) is fulfilled. 

Theorem 4.3. Let 
  

A = (a
nk

)  be a normal matrix and 
1 ( )

nk
A c

!
=  its inverse matrix. Then 

A M
l cs!  for 

every 
 
M !F

v

cs  if and only if; 

  

v
n
c

nl

n= l

!

" = O(1).         (4.4) 

Proof. For the proof we refer to Theorem 2.3 from 
[3]. 

We note that (4.1) follows from (4.4). Hence from 
Theorems 4.2 and 4.3 we obtain immediately the 
following corollary. 

Corollary 4.4. Let 
  

A = (a
nk

)  be a normal matrix 

and 
  
v = (v

k
)  a sequence of complex numbers. If 

 
l
A
! cs

M
 for every 

  
M !F

v

cs
,  then 

 
l
A
! l

M
 for every 

  
M !F

v

l
.  
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From Theorems 4.2 and 4.3 we also obtain 
immediately the following result. 

Corollary 4.5. Let 
  

A = (a
nk

)  be a normal matrix 

and 
  
v = (v

k
)  a sequence of complex numbers. If 

 
l
A
! cs

M
 for every 

 
M !F

v

cs  or 
 
l
A
! l

M
 for every 

  
M !F

v

l
,  then; 

  
v

n
c

nn
= O(1).         (4.5) 

Now we consider the special case if A is the series-
to-series Cesàro matrix 

  
C

!
,  where  ! "C  and 

 ! " #1,#2,... ; i.e., 
  
C

!
= (a

nk
)  is a lower triangular 

matrix with (see [12], p. 84); 

  

a
nk

=
kA

n! k

" !1

nA
n

"
, 

for 
  
k ! n,  where 

 

A
n

!
=

n +!
n

"

#$
%

&'
 are Cesàro numbers. 

The inverse matrix 
  

A
!1

= (c
nk

)  of  C
!  is the lower 

triangular matrix with (see [12], p. 86), 

  

c
nk

=
kA

k

!
A

n" k

"! "1

n
, 

for   k ! n.  To prove next results, the following properties 
of Cesàro numbers are necessary (see [12], p. 77-81): 

  
A

0

!1
= 1; A

n

!1
= 0  for   n ! 1,        (4.6) 

  
A

n

!
" K

1
(n +1)Re!  for 

  
! "C, K

1
> 0,      (4.7) 

  
A

n

!
" K

2
(n +1)Re! for

  
! "C,! # $1,$2,...; K

2
> 0.     (4.8) 

We see that 
  
e

0
!l

C
" ,  since 

  
C

n

!
e

0
= a

n0
 and 

  
a

00
= 1,  

  
a

n0
= 0  for   n ! 1.  Hence from Lemma 4.1 we 

immediately obtain: 

Corollary 4.6. Let 
  
! "C,! # $1,$2,....   

(i) If 
 
l
C
! " cs

M
 for 

  
M !F ,  then 

  
(r

n
) !cs.  

(ii) If 
 
l
C
! " l

M
 for 

  
M !F ,  then 

  
(r

n
) !l.  

Using Theorem 4.2 we prove the following 
statement.  

Proposition 4.7 ([3], Proposition 3.2). Let  ! "C  
with  Re! > 0  or  ! = 0,  and 

  
v = (v

k
)  be defined by 

  
v

k
= 1 / A

k

t
,    t !C.  Then 

 
l
C
! " cs

M
 for every 

 
M !F

v

cs  if 
and only if   Re! " Re t.  

Proof. Condition (4.4) we can rewrite as follows: 

  

T
l

:= lA
l

! A
n" l

"! "1

nA
n

t

n= l

#

$ = O(1).       (4.9) 

Since 
  
A

l

0
= 1,  then (4.8) for  ! = 0  is equivalent to 

the condition; 

  

1

A
k

t
= O(1)       (4.10) 

by (4.6). Conditions (4.7) and (4.8) imply that (4.10) is 
fulfilled if and only if   Re t ! 0.  

Let now  Re! > 0.  Using (4.6) we obtain that (4.5) 
can be presented as; 

  

A
l

!

A
l

t
= O(1).        (4.11) 

Condition (4.11) holds by (4.7) and (4.8) if and only 
if   Re! " Re t.  With the help of (4.7) and (4.8) we get for 
  Re! " Re t  that; 

  

T
l
= O(1)(l +1)Re! +1 (n " l +1)" Re! "1

(n + l +1)Re t+1
n= l

#

$  

  

= O(1)(l +1)Re! +1 1

(n +1)Re! +1(n + l +1)Re t+1
n=0

"

#  

  

= O(1)(l +1)Re(! " t ) 1

(n +1)Re! +1 n

l +1
+1

#

$%
&

'(

Re t+1
n=0

)

*  

  

= O(1)
1

(n +1)Re! +1
n=0

"

# = O(1).  

Thus, 
 
l
C
! " cs

M
 by Theorem 4.2. 

Proposition 4.8. Let  ! "C with  Re! > 0  or  ! = 0,  

and 
  
v = (v

k
)  be defined by 

  
v

k
= 1 / A

k

t
,    t !C.  Then 

 
l
C
! " l

M
 for every 

 
M !F

v

l  if and only if   Re! " Re t.  

Proof. For the proof we refer to Proposition 3.3 from 
[3]. 
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5. MATRIX TRANSFORMS FROM 
 
c

A
 INTO 

 
c

B
 BY 

FACTORABLE MATRICES 

 In this section we consider matrix transforms from 

 
c

A
 into 

 
c

B
 for certain matrices A and B. 

Proposition 5.1 ([4], Proposition 3.1). Let 

  
A = (a

nk
)  be a matrix with 

  
e

0
!c

A
,  

  
B = (b

nk
)  an 

arbitrary matrix with real or complex entries and 

  M !F.  If 
  
M !(c

A
,c

B
),  then 

  
(r

n
) !c

B
.  

Proof follows from the equality 
  
M

n
e

0
= r

n
v

0
.  

Theorem 5.2 ([4], Theorem 3.2). 
Let

  
A = (a

nk
),

  
B = (b

nk
)  be matrices with real or 

complex entries,  M !F  and 
  
B

t
= (b

sn

t )  a matrix 

defined by the relation 
  
b

sn

t
= b

sn
r
n
.  Then 

  
M !(c

A
,c

B
)  if; 

  
(v

k
x

k
) !cs  for each 

  
x !c

A
,       (5.1) 

 B
t  is conservative.       (5.2) 

Proof follows from the relation; 

  

b
sn

n

! M
n
x = b

sn

t

n

! v
k
x

k

k=0

n

! , 

for each 
  
x !c

A
.   

We say that a matrix A is series-to-sequence 
conservative (shortly, Sr-Sq conservative) if  Ax !c  for 
every ,x cs!  and series-to-sequence regular (shortly, 
Sr-Sq regular) if; 

  

lim
n

A
n
x = lim

n
x

k

k=0

n

! , 

for every   x !cs.  

Proposition 5.3 ([4], Proposition 3.3). Let 
  

B = (b
nk

)  

be Sr-Sq regular, where 
  
b

nk
> 0  for all n and k, and 

  
(r

n
)  a sequence of complex numbers. Then condition 

(5.2) holds if and only if 
  
(r

n
) !l.  

Proof. Necessity. Let  B
t  is conservative. Then by 

Lemma 3.1, 

  

T
s

:= b
sn

r
n

n

! = b
sn

r
n

n

! = O(1).        (5.3) 

If 
  
(r

n
) !l,  then (see [14], p. 92) 

  
lim

s
T

s
= !; i.e., 

relation (5.3) does not hold. Thus 
  
(r

n
) !l.  

Sufficiency. Assume that 
  
(r

n
) !l.  We prove that all 

conditions of Lemma 3.1 hold for   A = B
t
.  From the Sr-

Sq regularity of B we obtain that 
  
(r

n
) !c

B
,  

  
b

nk
= O(1),  

and there exist the finite limits lim
n nk
b  by Proposition 

17 of [35]. Hence 

  

T
s
= O(1) r

n

n

! = O(1).  

Consequently all conditions of Lemma 3.1 are 
fulfilled for 

  
A = B

t
;  i.e., condition (5.2) holds by Lemma 

3.1. 

Theorem 5.4 ([4], Theorem 3.4). Let 

  
A = (a

nk
),

  
B = (b

nk
)  be matrices with real or complex 

entries, 
  
l !c

B
,  

  
(r

n
) !l  and   M !F.  Then 

  
M !(c

A
,c

B
)  

if condition (5.1) holds. 

Proof. For each 
 
x !c

A
 we denote; 

  

S
n

:= v
k

k=0

n

! x
k
.  

Since it follows from (5.1) that 
  
(S

n
) !c  for each 

  
x !c

A
,  then 

  
(S

n
)  is bounded for each 

  
x !c

A
.  This 

implies; 

  

M
n
x

n

! = r
n
S

n

n

! = O(1) r
n

n

! = O(1)   

for every 
  
x !c

A
.  Hence, due to 

  
l !c

B
,  

  
M !(c

A
,c

B
).  

Now we consider the special case if A is the series-
to-sequence Cesàro matrix 

  
C

!
,  where  ! "C  and 

 ! " #1,#2,... ; i.e., 
  
C

!
= (a

nk
)  is a lower triangular 

matrix with (see [12], p. 76); 

 

a
nk

=
A

n! k

"

nA
n

"
,   k ! n.   

Lemma 5.5 ([12], p. 192). Let  ! "C  with  Re! > 0  
or  ! = 0,  and 

  
v = (v

k
)  is a sequence of complex 

numbers. Then 
  
(v

k
x

k
) !cs  for every 

  
(x

k
) !c

C
"  if and 

only if; 

  
v

k
= O[(k +1)! Re" ] ,       (5.4) 
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(k +1)Re!

k

" #
k

! +1
v

k
= O(1),       (5.5) 

where, 

  

!
k

" +1
v

k
:= A

n# k

#" #2

n= k

$

% v
n
.   

Further we also need the relation (see [12], p. 81) 

  

A
n! k

"

A
n

#
=

#

# !" !1
n= k

$

% &
1

A
k

#!" !1
 

for 
  
Re! " 0, Re(! #$ ) > 1, k = 1,2,....       (5.6) 

Proposition 5.6 ([4], Theorem 4.1). Let  ! "C with 

 Re! > 0  or  ! = 0  and 
  

B = (b
nk

)  be a matrix with 

  
l !c

B
.  Let  M !F  with 

  
v

k
:= 1 / A

k

t
,  

  
t !C, Re t > 0  and 

  
(r

n
) !l.  Then 

  
M !(c

C
" ,c

B
)  if   Re! " Re t.   

Proof. It is sufficient to show by Theorem 5.4 that 
(5.1) is satisfied for A = C

!  and 
  
v

k
= 1 / A

k

t
.  Using (4.8) 

and (5.6) we obtain; 

  

(k +1)Re!

k

" #
k

! +1
v

k
= (k +1)Re!

k

"
A

n$ k

$! $2

A
n

t

n= k

%

"  

  

= (k +1)Re!

k

"
t

t +! +1
#

1

A
k

t+! +1
  

  

= O(1)
(k +1)Re!

(k +1)Re(t+! )+1
k

" = O(1)
1

(k +1)Re(t+1)
k

" = O(1);   

i.e., condition (5.5) holds. Condition (5.4) also holds, 
because by (4.8) there exists   K > 0,  such that; 

  

1

A
k

t
!

1

K(k +1)Re t
= O(1)(k +1)" Re t

= O(1)(k +1)" Re# .   

Hence condition (5.1) holds by Lemma 5.5. Thus 

  
M !(c

C
" ,c

B
)  by Theorem 5.4. 

Proposition 5.7. Let  ! "C  with  Re! > 0  or  ! = 0  
and

  
B = (b

nk
)  be a matrix with 

  
l !c

B
.  Let  M !F  with 

  
v

k
:= yk

,
 
y !C  and 

  
(r

n
) !l.  Then 

  
M !(c

C
" ,c

B
)  if 

  
y < 1.  

Proof. For the proof we refer to Theorem 4.2 from 
[4].  

REFERENCES 

[1] Aasma A, Dutta H and Natarajan PN. An Introductory Course 
in Summability Theory. JOHN WILEY & SONS: Hoboken 
2017. 
https://doi.org/10.1002/9781119397786 

[2] Aasma A. Matrix Transforms of Summability Domains of 
Normal Series-to-Series Matrices. J Adv Appl Comput Math 
2014; 1: 35-39. 
https://doi.org/10.15377/2409-5761.2014.01.02.1 

[3] Aasma A. Some inclusion theorems for absolute summability. 
Appl Math Lett 2012; 25(3): 404-407. 
https://doi.org/10.1016/j.aml.2011.09.023 

[4] Aasma A. Factorable matrix transforms of summability 
domains of Cesàro matrices. Int J Contemp Math Sci 2011; 
6(44): 2201-2206. 

[5] Aasma A. On the matrix transformations of absolute 
summability fields of reversible matrices. Acta Math. Hungar 
1994; 64(2): 143-150. 
https://doi.org/10.1007/BF01874118 

[6] Aasma A. Matrix transformations of summability fields of 
regular perfect matrix methods. Acta et Comment Univ 
Tartuensis 1994; 970: 3-12. 

[7] Aasma A. Transformations of summability fields. Acta et 
Comment Univ. Tartuensis 1987; 770: 38-51 (in Russian). 

[8] Akgun FA and Rhoades BE. Characterizations of H-J 
Matrices. Filomat 2016; 30 (3): 675-679. 
https://doi.org/10.2298/FIL1603675A 

[9] Akgun FA and Rhoades BE. Factorable generalized 
Hausdorff matrices. J Advanced Math Studies 2010; 3(1):  
1-8. 

[10] Alp !a r L. On the linear transformations of series summable 
in the sense of Ces !a ro. Acta Math Hungar 1982; 39(1): 
233-243.  
https://doi.org/10.1007/BF01895236 

[11] Alp !a r L. Sur certainschangements de variable des series 
de Faber. Studia Sci Math Hungar 1978; 13(1-2): 173-180.  

[12] Baron S. Introduction to the theory of summability of series. 
Valgus: Tallinn 1977 (in Russian). 

[13] Boos J. Classical and modern methods in summability. 
Oxford University Press: Oxford 2000. 

[14] Cooke RG. Infinite Matrices and Sequence Spaces. State 
Publishing Hous of Physics-Mathematics Literature: Moscow 
1960 (in Russian). 

[15] Hardy GH. Divergent series. Oxford University Press: U.K. 
1949. 

[16] Rhaly JrHC. Posinormality, coposinormality, and 
supraposinormality for some triangular operators. Sarajevo J 
Math 2016; 12(24)(1): 125-140. 

[17] Rhaly JrHC. Concerning the Cesàro matrix and its immediate 
offspring. Acta Math Univ Comenian (N.S.) 2015; 84(1):  
27-38. 

[18] Rhaly JrHC. A superclass of the posinormal operators. New 
York J Math 2014; 20: 497-506. 

[19] Rhaly Jr.HC and Rhoades BE. The weighted mean operator 
on   l

2  with the weight sequence 
  
w

n
= n +1  is hyponormal. 

New Zealand J Math 2014; 44: 103-106. 
[20] Rhaly Jr.HC and Rhoades BE. Posinormal factorable 

matrices with a constant main diagonal. Rev Un Mat 
Argentina 2014; 55(1): 19-24. 

[21] Rhaly Jr.HC. A comment on coposinormal operators. 
Matematiche (Catania) 2013; 68 (1): 83-86. 

[22] Rhaly Jr.H.C and Rhoades BE. Conditions for factorable 
matrices to be hyponormal and dominant. Sib Elektron Mat 
Izv 2012; 9: 261-265. 

 



Matrix Transforms by Factorable Matrices Journal of Advances in Applied & Computational Mathematics, 2018, Vol. 5        11 

[23] Rhaly Jr.H.C. Posinormal factorable matrices whose 
interrupter is diagonal. Mathematica 2011; 53(76) (2): 181-
188. 

[24] Rhaly Jr.H.C. Discrete generalized Cesàro operators. Proc 
Amer Math So 1986; 34: 225-232. 

[25] Rhaly Jr.H.C. p- Cesàro matrices, Houston J Math 1989; 
15(1): 137-146. 

[26] Rhaly Jr.H.C. Terraced matrices. Bull London Math Soc 
1989; 21(4): 399-406. 
https://doi.org/10.1112/blms/21.4.399 

[27] Rhoades BE. An extension of two results of Hardy. Sarajevo 
J Math 2013; 9 (21): 95-100. 
https://doi.org/10.5644/SJM.09.1.08 

[28] Rhoades BE and Yildirim M. The spectra and fine spectra of 
factorable matrices on c0. Math Commun 2011; 16(1): 265-
270. 

[29] Rhoades BE and Sen P. Lower bounds for some factorable 
matrices. Int J Math Math Sci 2006: Art. ID 76135: 1-13. 

[30] Rhoades BE. Some sequence spaces which include c0 and 
c. Hokkaido Math J 2006; 35: 587-599. 
https://doi.org/10.14492/hokmj/1285766418 

[31] Rhoades BE and Yildirim M. Spectra for Factorable Matrices 
on .

pl  Integr equ oper Theory 2006; 55: 111-126. 

[32] Rhoades BE. Lower bounds for some matrices. Linear and 
Multilinear Algebra 1987; 20 (4): 47-352. 
https://doi.org/10.1080/03081088708817767 

[33] Rhoades BE. Lower bounds for some matrices II. Linear and 
Multilinear Algebra 1990; 26(1-2): 49-58. 
https://doi.org/10.1080/03081089008817965 

[34] Sinnamon G. Masked factorable matrices. Proc Royal Soc 
Edinburgh 2002; 132A: 245-254. 
https://doi.org/10.1017/S0308210500001608 

[35] Stieglitz M and Tietz H. Matrix transformationen von 
Folgenräumen: eine Ergebnis !!u bersicht. Math Z 1977; 154: 
1-16. 
https://doi.org/10.1007/BF01215107 

[36] Thorpe B. Matrix transformations of Ces !a ro summable 
series. Acta Math Hungar 1986; 48(3-4): 255-265. 
https://doi.org/10.1007/BF01951350 

[37] Wilansky A. Functional Analysis. Blaisdell Publ Co: New York 
1964. 

[38] Zeltser M. Factorable matrices and their associated Riesz 
matrices. Proc Estonian Acad Sci 2014; 63(4): 379-386.  
https://doi.org/10.3176/proc.2014.4.03 
 

 

Received on 24-11-2017 Accepted on 15-01-2018 Published on 30-01-2018 

DOI: http://dx.doi.org/10.15377/2409-5761.2018.05.1 

© 2018 Ants Aasma; Avanti Publishers. 
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in 
any medium, provided the work is properly cited. 
 

 


