Matrix Transforms of Summability Domains of Normal Series-toSeries Matrices

Ants Aasma*

Department of Economics, Tallinn University of Technology, Akadeemia tee 3, 12618 Tallinn, Estonia

Abstract

In the present paper matrix transforms of summability domains $c s_{A}$ of normal series-to-series matrices A are investigated. Let M be a matrix and B a triangular series-to-series matrix. Necessary and sufficient conditions for M to be a transform from $c s_{A}$ into $c s_{B}$ are found. For application the special case, when A is a series-to-series Riesz matrix, are studied.

Keywords: Matrix transforms, normal series-to-series matrices, conservative and regular series-to-series matrices, Riesz matrix.

1. INTRODUCTION

In this paper matrix transforms of summability domains of normal series-to-series matrices are investigated. Let ω be the set of all sequences with real or complex entries, $c \subset \omega$ the set of all convergent sequences and $c_{0} \subset c$ the set of all null sequences. For every $x=\left(x_{k}\right) \in \omega$ we denote
$S x=\left(X_{n}\right), X_{n}:=\sum_{k=0}^{n} x_{k}, \lim S x:=\lim _{n} X_{n}$.
Throughout this paper, we assume that indices and summation indices run from 0 to ∞ unless otherwise specified. Let
$c s:=\{x \in \omega \mid S x \in c\}, c s_{0}:=\left\{x \in c s \mid S x \in c_{0}\right\}$.
Let $A=\left(a_{n k}\right)$ be a matrix with real or complex entries. We say that a sequence x is $A^{s e r}$-Asummable if the series

$$
A_{n} x:=\sum_{k} a_{n k} x_{k}
$$

are convergent and $A x:=\left(A_{n} x\right) \in c s$. If the series $A_{n} x$ are convergent and $A x \in c$, then we say that x is $A^{\text {seq }}-$ summable. The sets of all $A^{s e r}$ - and $A^{\text {seq }}$-summable sequences we denote correspondingly by $c s_{A}$ and c_{A}. A matrix $A=\left(a_{n k}\right)$ is said to be normal if $A=\left(a_{n k}\right)$ is lower triangular and $a_{n n} \neq 0$. A matrix A is called series-to-series conservative (shortly, $\mathrm{Sr}-\mathrm{Sr}$ conservative) if $\operatorname{cs} \subset c s_{A}$, and series-to-series regular (shortly, Sr-Sr regular) if

[^0]$\lim S(A x)=\lim S x$
for every $x \in c s$.Similarly, if for every $x \in c s$ (for every $x \in c$) we have $A x \in c$, then A is called series-tosequence conservative or $\mathrm{Sr}-\mathrm{Sq}$ conservative (correspondingly sequence-to-sequence conservative or $\mathrm{Sq}-\mathrm{Sq}$ conservative). If
$$
\lim _{n} A_{n} x=\lim S x
$$
for every $x \in c s$, then A is called series-to-sequence regular or Sr -Sq regular. If
$$
\lim _{n} A_{n} x=\lim _{n} x_{n}
$$
for every $x \in c$, then A is called sequence-to-sequence regular or Sq-Sq regular. Let $M=\left(m_{n k}\right)$ be a matrix with real or complex entries and $B=\left(b_{n k}\right)$ a triangular matrix with real or complex entries. We say that A and B are $M^{s e r}$-consistent on $c s_{A}$ if
$$
\lim S[B(M x)]=\lim S(A x),
$$
and $M^{\text {seq }}$-consistent on c_{A} if
$$
\lim _{n} B_{n}(M x)=\lim _{n} A_{n} x .
$$

If $M=\left(\delta_{n k}\right)$, where $\delta_{n k}=1$ for $n=k$ and $\delta_{n k}=0$ otherwise, $M^{\text {ser }}$-consistency and $M^{\text {seq }}$-consistency of A and B coincide with ordinary consistency of A and B.

The matrix transforms from c_{A} into c_{B} are studied in several works. First results for such transforms are obtained by Alpár (see [8], [9]), who found necessary and sufficient conditions for M to be transform from c_{A} into c_{B} if $A=C^{\alpha}$ and $B=C^{\beta}$ are series-to-sequence

Cesáro matrices with orders $a>0$ and $\beta>0$. In 1986
Thorpe (see [13]) generalized the result of Alpar, taking instead of C^{β} arbitrary normal matrix B. Further generalization is presented in [7], where the author of the present paper considered this transform in the case where A is a reversible series-to-sequence matrix and B arbitrary triangular (series-to-sequence or sequence-to-sequence) matrix. In [6] this problem is studied for non-triangular B and in [6] also necessary and sufficient conditions for $M^{\text {seq }}$-consistency of A and B are found. Later in 1994 (see [5]) above-mentioned results are generalized for the case where A is a $\mathrm{Sr}-\mathrm{Sq}$ regular or $\mathrm{Sq}-\mathrm{Sq}$ regular perfect matrix and B is a triangular matrix. In 2009 (see [4]) the transform from c_{A} into $c s_{B}$ are investigated in the case, where the elements of normal A, triangular B and arbitrary M are continuous linear operators from a Banach space X into a Banach space Y. In [1-3] some classes of matrices M, transforming c_{A} into $c s_{B}$, are characterized.

In this paper in Section 2 necessary and sufficient conditions for M (with real or complex entries) to be transform from $c s_{A}$ into $c s_{B}$ for a normal series-toseries matrix A (with real or complex entries) and a triangular series-to-series matrix B (with real or complex entries) are established. Also in Section 2 the $M^{\text {ser }}$ consistency of A and B on $c s_{A}$ are investigated. In Section 3 for application the special case, when A is a series-to-series Riesz matrix, are studied.

2. MAIN RESULTS

Let throughout this Section $A=\left(a_{n k}\right)$ be a normal series-to-series matrix with its inverse $A^{-1}=\left(\eta_{n k}\right)$, $B=\left(b_{n k}\right) \quad$ a triangular series-to-series matrix and $M=\left(m_{n k}\right)$ an arbitrary matrix. Throughout this paper, we use the following notations:

$$
C_{s l}^{n}:=\sum_{k=l}^{s} m_{n k} \eta_{k l}, \Delta_{l} C_{s l}^{n}:=C_{s l}^{n}-C_{s, l+1}^{n} .
$$

Theorem 2.1. For all n the series $M_{n} x$ are convergent for every $x \in c s_{A}$ if and only if
there exist finite limits $\lim _{s} c_{s l}^{n}:=c_{n l}$,
$\sum_{l}\left|\Delta_{l} c_{s l}^{n}\right|=O_{n}(1)$.
Moreover, for every $x \in c s_{A}$ hold the equalities
$M_{n} x=\xi c_{n 0}+\sum_{l} \Delta_{l} c_{n l}\left(Y_{l}-\xi\right)$
with
$Y_{l}:=\sum_{k=0}^{l} y_{k}$,
where $y_{k}:=A_{k} x$ and $\xi:=\lim _{l} Y_{l}$.

Proof. Necessity. Let all series $M_{n} x$ be convergent for every $x \in c s_{A}$. Then for every $x \in c s_{A}$ we have
$k=\sum_{k=l}^{s} m_{n k} x_{k}=\sum_{l=o}^{s} c_{s l}^{n} y_{l}=\left(C^{n}\right)_{s} y$,
where $y=\left(y_{l}\right) \in c s$ and $C^{n}:=\left(c_{s l}^{n}\right)$. As by the normality of A for every $y \in c s$ there exists $x \in c s_{A}$ so that $A x=y$, then the matrix C^{n} for every n transforms cs into c. In addition to it,
$\lim _{s}\left(C^{n}\right)_{s} y=M_{n} x$
for every $x \in c s_{A}$, where $y=A x$. Consequently conditions (1) and (2) are fulfilled and equality (3) holds for each n by Theorem 1.3 of [10] (see also [11], p. 50).

Sufficiency. Let conditions (1) and (2) be fulfilled. Then by Theorem 1.3 of [10] the matrix C^{n} for every n transforms $c s$ into c. As equalities (5) hold, then equalities (3) for every n also are satisfied by Theorem 1.3 of [10].

Now we prove the main result of this paper.
Theorem 2.2. A matrix M transforms $c s_{A}$ into $c s_{B}$ if and only if conditions (1) and (2) are satisfied and
the series $\sum_{t} \gamma_{t l}$ are convergent for all l,
$\sum_{l}\left|\sum_{t=0}^{s} \Delta_{l} \gamma_{t l}\right|=0(1)$,
where
$\gamma_{t l}:=\sum_{k=o}^{t} b_{t k} c_{k l}$.
Proof. Necessity. Assume that M transforms $c s_{A}$ into $c s_{B}$. Then all series $M_{n} x$ are convergent for every $x \in c s_{A}$. Hence conditions (1) and (2) are fulfilled and equalities (3) (where Y_{l} presented by (4)), hold for every $x \in c s_{A}$ by Theorem 2.1. It follows from equalities (3) that
$B_{t}(M x)=\xi \gamma_{t 0}+\sum_{l} \Delta_{l} \gamma_{t l}\left(Y_{l}-\xi\right)$
for every $x \in c s_{A}$. By the normality of A for the sequence $e^{0}:=(1.0,0, \ldots) \in c s$ there exists the sequence $\tilde{x} \in c s_{A}$ so that $A \tilde{x}=e^{0}$. This implies due to $\tilde{x}=\left(\left(A^{-1}\right) k^{c^{0}}\right)$ that
$B_{t}(M \tilde{x})=B_{t}\left[M\left(A^{-1} e^{0}\right)\right]=\gamma_{t 0}$.
Hence
the series $\sum_{t} \gamma_{t 0}$ is convergent.
As every $Y=\left(Y_{l}\right) \in c$ can be presented in the form (4), where $y=\left(y_{k}\right) \in c s$ and by the normality of A for this y there exists $x \in C s_{A}$ so that $A x=y$, then from (8) and (9) we get that the series
$\sum_{t} \sum_{l} \Delta_{l} \gamma_{l l}\left(Y_{l}-\xi\right)$
is convergent for every $Y=\left(Y_{l}\right) \in c$ with $\lim _{l} Y_{l}=\xi$. It's well-known (see, for example [11]) that every $Y=\left(Y_{l}\right) \in c$ with $\lim _{l} Y_{l}=\xi$ can be presented in the form
$Y=Y^{0}+\xi e ; Y^{0}=\left(Y_{k}^{0}\right) \in c_{0}, e=(1,1, \ldots)$.
Thus, the series (10) is convergent for each $Y^{0}=\left(Y_{k}-\xi\right)$, i.e. the matrix $\Gamma:=\left(\Delta_{i} \gamma_{t i}\right)$ transforms c_{0} into $c s$. Therefore condition (7) is satisfied and the series
$\sum_{l} \Delta_{l} \gamma_{t}$
are convergent for all l by Proposition 43 of [12]. Consequently, condition (6) is fulfilled by (9).

Sufficiency. Let conditions (1), (2), (6) and (7) be fulfilled. Then all series $M_{n} x$ are convergent and equalities (3) are valid for every $x \in c s_{A}$ by Theorem 2.1. The validity of (3) implies also the validity of (8). It follows from conditions (6) and (7) that the matrix $\Gamma:=\left(\Delta \gamma_{t i}\right)$ transforms c_{0} into cs. Therefore from (8) we get by condition (6) that M transforms $c s_{A}$ into $c s_{B}$.

From Theorem 2.2 we get the following result.
Corollary 2.3. Matrices A and B are $M^{\text {ser }}$ consistent if and only if conditions (1), (2) and (7) are satisfied and
$\sum_{t} \gamma_{l l}=1$ for all l.
Proof. Necessity. Let A and B are $M^{\text {ser }-}$ consistent. Then conditions (1), (2) and (7) are fulfilled by Theorem 2.2 and equalities (8) are satisfied for every $x \in c s_{A}$, where
$\lim S(A x)=\xi$.
Hence
$\lim S[B(M x)]=\xi$
for every $x \in c s_{A}$. Let $\tilde{x} \in c s_{A}$ be a sequence, for which $A \tilde{x}=e^{0}$. As in this case $\lim S(A \tilde{x})=1$, then $\lim S[B(M \tilde{x})]=\sum_{t} \gamma_{t 0}=1$.

Therefore, it follows from (8) and (13) that $\Gamma:=\left(\Delta_{l} \gamma_{t i}\right)$ transforms c_{0} into $c s_{0}$. Hence
$\sum_{t} \Delta_{t} \gamma_{t l}=0$
for all l by Proposition 54 of [12]. Consequently, with the help of (14) we have that condition (11) is satisfied.

Sufficiency. Let conditions (1), (2), (7) and (11) be satisfied. Them M transforms $c s_{A}$ into $c s_{B}$ by Theorem 2.2 and equalities (8) hold for every $x \in c s_{A}$. From conditions (7) and (11) it follows with the help of Proposition 54 of [12] that $\Gamma:=\left(\Delta_{t} \gamma_{i t}\right)$ transforms c_{0} into $c s_{0}$. Consequently from (8) we get with the help of condition (7) that equality (13) holds for each $x \in c s_{A}$ satisfying equality (12), i.e. A and B are $M^{s e r}$ consistent.

For a Sr-Sr-conservative matrix A we get the following necessary condition for M to be transform from $c s_{A}$ to $c s_{B}$.

Corollary 2.4. Let A be a Sr-Sr-conservative. If M transforms $c s_{A}$ into $c s_{B}$, then
$\sum_{t} g_{t k}=g_{k}\left(g_{k}\right.$ is a finite number $)$,
where
$g_{t k}:=\sum_{n=0}^{t} b_{m n} m_{n k}$.
Proof. Let $e^{k}=(0, \ldots, 0,1,0, \ldots)$ with number 1 in k-th position. Taking $e^{k} \in c s_{A}$, we get
$\lim S\left[B\left(M e^{k}\right)\right]=\sum_{t} g_{t k}$.
This implies the validity of the assertion of Corollary 2.4.

For a Sr -Sr-regular matrix A we get the following necessary condition for $M^{\text {ser }}$-consistency of A and B.

Corollary 2.5. Let A be a Sr-Sr-regular. If A and B are $M^{\text {ser }}$-consistent on cs $_{p}$, then condition (15) is fulfilled with $g_{k}=1$.

Proof follows from the fact that $\lim S\left(A e^{k}\right)=1$ for a Sr-Sr-regular matrix A.

3. MATRIX TRANSFORMS OF SUMMABILITY DOMAINS OF RIESZ MATRICES

In this section we consider the case when A is a Riesz matrix. Let $\left(p_{n}\right)$ be a sequence of nonzero complex numbers, $\quad P_{n}=p_{0}+\ldots+p_{n} \neq 0 \quad$ and let $P=\left(R, p_{n}\right)=\left(a_{n k}\right)$ be the series-to-series Riesz matrix generated by $\left(p_{n}\right)$, i.e. P is the normal matrix with
$a_{n k}=\frac{P_{k-1} p_{n}}{P_{n} P_{n-1}}$
(see [10], p. 113). Throughout this section, we assume that terms with negative indices are equal 0 . The matrix P has the inverse matrix $P^{-1}=\left(\eta_{n k}\right)$, where (see [10], p. 116)
$\eta_{n k}:=\left\{\begin{array}{cc}\frac{P_{n}}{p_{n}} & (k=n), \\ \frac{P_{n-2}}{p_{n-1}} & (k=n-1), \\ 0 & (k<n-1 \text { or } k>n) .\end{array}\right.$
Theorem 3.1. Let P be a Sr-Sr-conservative matrix. Then M transforms $c s_{P}$ into $c s_{B}$ if and only if condition (15) is fulfilled and
$\frac{P_{s}}{p_{s}} m_{n s}=O_{n}(1)$,
$\frac{P_{s-2}}{p_{s-1}} m_{n s}=O_{n}(1)$,
$\sum_{l=0}^{s}\left|\Delta_{l}\left(\frac{P_{l}}{p_{l}} \Delta_{l} m_{n l}\right)+\Delta_{l} m_{n, l+1}\right|=O_{n}(1)$,

$$
\begin{equation*}
\sum_{l}\left|\Delta_{l}\left(\frac{P l}{p l} \sum_{l=0}^{s} \Delta_{l} g_{l l}\right)+\sum_{t=0}^{s} \Delta_{l} g_{t l+1+1}\right|=O(1) . \tag{20}
\end{equation*}
$$

Proof. Necessity. Assume that M transforms $c s_{P}$ into $c s_{B}$. Then for $A=P$ conditions (1), (2), (6) and (7) are satisfied by Theorem 2.2 and condition (15) is fulfilled by Corollary 2.4. With the help of (16), we get that

$$
\begin{equation*}
c_{n l}=\frac{P_{l}}{p_{l}} m_{n l}-\frac{P_{l-1}}{p_{l}} m_{n, l+1}, \tag{21}
\end{equation*}
$$

$c_{s l}^{n}=\left\{\begin{array}{cc}c_{n l} & (l \leq s-1), \\ \frac{P_{s}}{p_{s}} m_{n s} & (l=s), \\ 0 & (l>s) .\end{array}\right.$
Hence

$$
\begin{aligned}
& \left.\Delta_{l} c_{s l}^{n}\right|_{(l s-2)}=c_{s l}^{n}-c_{s, l+1}^{n}=\frac{P_{l}}{p_{l}} m_{n l}-\frac{P_{l-1}}{p_{l}} m_{n, l+1}-\frac{P_{l+1}}{p_{l+1}} m_{n, l+1}+\frac{P_{l}}{p_{l+1}} m_{n, l+2} \\
& =\frac{P_{l}}{p_{l}} m_{n l}-\frac{P_{l+1}}{p_{l+1}} m_{n, l+1}-\frac{P_{l}-p_{l}}{p_{l}} m_{n, l+1}+\frac{P_{l+1}-p_{l+1}}{p_{l+1}} m_{n, l+2} \\
& =\frac{P_{l}}{p_{l}} \Delta_{l} m_{n l}-\frac{P_{l+1}}{p_{l+1}} \Delta_{l} m_{n, l+1}+\Delta_{l} m_{n, l+1} .
\end{aligned}
$$

This implies

$$
\begin{equation*}
\left.\Delta_{l} c_{s l}^{n}\right|_{(l \leq s-2)}=\Delta_{l}\left(\frac{P_{l}}{p_{l}} \Delta_{l} m_{n l}\right)+\Delta_{l} m_{n, l+1} . \tag{22}
\end{equation*}
$$

It is easy to see that

$$
\begin{align*}
& \left.\Delta_{l} c_{s l}^{n}\right|_{(l=s-1)}=\frac{P_{s-1}}{p_{s-1}} m_{n, s-1}-\frac{P_{s}}{p_{s}} m_{n, s}-\frac{P_{s-2}}{p_{s-1}} m_{n, s}, \tag{23}\\
& \left.\Delta_{l} c_{s l}^{n}\right|_{(l=s)}=\frac{P_{s}}{p_{s}} m_{n, s} \tag{24}
\end{align*}
$$

and

$$
\begin{equation*}
\left.\Delta_{l} c_{s \mid}^{n}\right|_{(>s)}=0 . \tag{25}
\end{equation*}
$$

Therefore conditions (17) and (19) are fulfilled by (2) and
$\left|\frac{P_{s-1}}{p_{s-1}} m_{n, s-1}-\frac{P_{s}}{p_{s}} m_{n, s}-\frac{P_{s-2}}{p_{s-1}} m_{n s,}\right|=O_{n}(1)$.
Consequently, condition (18) is satisfied by (17).

Using (21), we get
$\gamma_{t l}=\frac{P_{l}}{p_{l}} g_{t l}-\frac{P_{l-1}}{p_{l}} g_{n, l+1}$.
Therefore, similarly to relation (22) it is possible to show that
$\Delta_{l} \gamma_{l l}=\Delta_{l}\left(\frac{P_{l}}{p_{l}} \Delta_{l} g_{l l}\right)+\Delta_{l} g_{l, l+1}$.
Thus, condition (20) is fulfilled by condition (7).
Sufficiency. Assume that conditions (15) and (17) (20) are fulfilled and show that M transforms $c s_{P}$ into $c s_{B}$. For this purpose it is sufficient to show that all conditions of Theorem 2.2 are satisfied for $A=P$. First we see that conditions (1) and (6) are fulfilled correspondingly by (21) and (26). As relations (22) (25) hold, then condition (2) is fulfilled by (17) - (19). From relation (27) we get by (20) that condition (7) is also satisfied. Thus M transforms $c s_{p}$ into $c s_{B}$ by Theorem 2.2.

From Theorem 3.1 we get the following corollary.
Corollary 3.2. Let P be a Sr-Sr-regular matrix. Then P and B are $M^{\text {ser }}$-consistent on $c s_{P}$ if and only if condition (15) with $g_{k}=1$ and conditions (17) - (20) are fulfilled.

Proof. Conditions (15) and (17) - (20) are necessary and sufficient for M to be transform from $c s_{P}$ into $c s_{B}$. Therefore conditions (1), (2), (6) and (7) are satisfied by Theorem 2.2. By the Sr -Sr-regularity of P we have that the relation $g_{k}=1$ is necessary for M consistency of P and B on $c s_{P}$. This relation implies by (26) that condition (11) is fulfilled. Consequently by Corollary 2.3 P and B are $M^{\text {ser }}$-consistent on $c s_{p}$.

It is well-known (see [10], p. 114 or [11]) that the existence of $\lim _{n} P_{n} \neq 0$ is necessary for P to be $\mathrm{Sr}-\mathrm{Sr}$ conservative and $\lim _{n}\left|P_{n}\right|$ is necessary for P to be Sr -Sr-regular. Therefore, from Theorem 3.1 we immediately get the following results.

Corollary 3.3. If M transforms $c s_{P}$ into $c s_{B}$ for a Sr-Sr-conservative Riesz matrix P, then
$m_{n s}=O_{n}\left(p_{s}\right)$ and $m_{n s}=O_{n}\left(p_{s-1}\right)$.
Corollary 3.4. If M transforms $c s_{P}$ into $c s_{B}$ for a Sr-Sr-regular Riesz matrix P, then

$$
m_{n s}=o_{n}\left(p_{s}\right) \text { and } m_{n s}=o_{n}\left(p_{s-1}\right) \text {. }
$$

ACKNOWLEDGEMENTS

This work was supported by Estonian Science Foundation grant 8627.

REFERENCES

[1] Aasma A. Some classes of matrix transforms of summability domains of normal matrices. Filomat 2012; 26(5): 1023-1028. http://dx.doi.org/10.2298/FIL1205023A
[2] Aasma A. Factorable matrix transforms of summability domains of Cesáro matrices. Int J Contemp Math Sci 2011; 6(44): 2201-2206.
[3] Aasma A. Some classes of matrix transforms of summability domains of Cesáro matrices. Math Model Anal 2010; 15(2): 153-160.
http://dx.doi.org/10.3846/1392-6292.2010.15.153-160
[4] Aasma A. Matrix transformations of summability domains of generalized matrix methods in Banach spaces. Rend Circ Mat Palermo 2009; 58(3): 467-476. http://dx.doi.org/10.1007/s12215-009-0036-9
[5] Aasma A. Matrix transformations of summability fields of regular perfect matrix methods. Acta et Comment Univ Tartuensis 1994; 970: 3-12.
[6] Aasma A. Characterization of matrix transformations of summability fields. Acta et Comment UnivTartuensis 1991; 928: 3-14.
[7] Aasma A. Transformations of summability fields. Acta et Comment UnivTartuensis 1987; 770: 38-51 (in Russian).
[8] Alpa'r L. On the linear transformations of series summable in the sense of Cesáro. Acta Math Hungar 1982; 39(1): 233243. http://dx.doi.org/10.1007/BF01895236
[9] Alpár L. Sur certainschangements de variable des series de Faber. Studia Sci Math Hungar 1978; 13(1-2): 173-180.
[10] Baron S. Introduction to the theory of summability of series. Valgus: Tallinn 1977 (in Russian).
[11] Boos J. Classical and modern methods in summability. Oxford University Press: Oxford 2000.
[12] Stieglitz M, Tietz H. Matrixtransformationen von Folgenr \ddot{a} umen: eine Ergebnis \ddot{u} bersicht. Math Z; 1977; 154: 1-16.
http://dx.doi.org/10.1007/BF01215107
[13] Thorpe B. Matrix transformations of Cesáro summable series. Acta Math Hungar 1986; 48(3-4): 255-265.
http://dx.doi.org/10.1007/BF01951350

[^0]: *Address correspondence to this author at the Department of Economics, Tallinn University of Technology, Akadeemia tee 3, 12618 Tallinn, Estonia; Tel: +372 6204052; Fax: +372 6204073; E-mail: ants.aasma@ttu.ee 2010 Mathematics Subject Classification: 40C05, 40D05, 40G99.

