Experimental Measurements and Modeling of Vapor-Liquid Equilibrium of Isobutane and Ethyl Mercaptan Binary System

Authors

  • Esther Neyrolles Mines ParisTech PSL University, Fontainebleau, France
  • Alain Valtz Mines ParisTech PSL University, Fontainebleau, France
  • Eric Boonaert Mines ParisTech PSL University, Fontainebleau, France
  • Christophe Coquelet Mines ParisTech PSL University, Fontainebleau, France

DOI:

https://doi.org/10.15377/2409-787X.2021.08.4

Keywords:

Isobutane, Oil and gases, Ethyl mercaptan, Equation of state, Vapor-liquid equilibrium

Abstract

In this work, new isothermal experimental data of vapor-liquid equilibrium of the isobutane and ethyl mercaptan binary system are presented. The pressure and temperature conditions are up to 1 MPa and between 298 and 343K. The experimental apparatus is based on a “static-analytic method” specially developed for low-pressure measurements. Two online capillary samplers are used to take vapor and liquid samples that are analyzed with a gas chromatograph. The classical Peng Robinson Equation of State is used to correlate the experimental data. The van Ness test is used to check the consistency of the data. The measured data are also compared to predicted values from two predictive models, and a good agreement is found between the PSRK UNIFAC and the PPR78 models and the experimental measurements.

References

Kohl A, Nielsen R. Gas purification 5th ed. Houst Gulf Publ Co 1997.

Stewart M, Arnold K. Gas sweetening and processing field manual. Gulf Professional Publishing; 2011.

Speight JG. Handbook of petroleum product analysis. John Wiley & Sons; 2015.

Breysse M, Djega-Mariadassou G, Pessayre S, Geantet C, Vrinat M, Pérot G, et al. Deep desulfurization: reactions, catalysts and technological challenges. Catal Today 2003;84:129–38. https://doi.org/10.1016/S0920-5861(03)00266-9.

van Konynenburg PH, Scott RL, Rowlinson JS. Critical lines and phase equilibria in binary van der Waals mixtures. Philos Trans R Soc Lond Ser Math Phys Sci 1980;298:495–540. https://doi.org/10.1098/rsta.1980.0266.

Afzal W, Valtz A, Coquelet C. Vapour-Liquid Equilibria of Ethane and Ethanethiol: Experiments and Modelling. J Nat Gas Eng 2018;3:96–108. https://doi.org/10.7569/jnge.2018.692505.

Awan JA, Tsivintzelis I, Coquelet C, Kontogeorgis GM. Phase Equilibria of Three Binary Mixtures: Methanethiol + Methane, Methanethiol + Nitrogen, and Methanethiol + Carbon Dioxide. J Chem Eng Data 2012;57:896–901. https://doi.org/10.1021/je2011049.

Boonaert E, Valtz A, Coquelet C. Vapour-liquid equilibria of n-butane and ethyl mercaptan: Experiments and modelling. Fluid Phase Equilibria 2020;504:112335. https://doi.org/10.1016/j.fluid.2019.112335.

Awan JA, Coquelet C, Tsivintzelis I, Kontogeorgis G. Phase Equilibrium Measurements and Modeling of 1-Propanethiol+ 1-Butanethiol+ CH4 in Methane Ternary System at 303, 336, and 368 K and Pressure Up to 9 MPa. J Chem Eng Data 2016;61:41–4. https://doi.org/10.1021/acs.jced.5b00134.

Robinson DB, Peng D-Y. The characterization of the heptanes and heavier fractions for the GPA Peng-Robinson programs. Gas processors association; 1978.

Privat R, Mutelet F, Jaubert J-N. Addition of the hydrogen sulfide group to the PPR78 model (predictive 1978, Peng–Robinson equation of state with temperature dependent k ij calculated through a group contribution method). Ind Eng Chem Res 2008;47:10041–52. https://doi.org/10.1021/ie800799z.

Horstmann S, Fischer K, Gmehling J. PSRK group contribution equation of state: revision and extension III. Fluid Phase Equilibria 2000;167:173–86. https://doi.org/10.1016/S0378-3812(99)00333-7.

ThermoLit: NIST Literature Report Builder for Thermochemical Property Measurements. NIST Lit Rep Draft n.d. https://trc.nist.gov/thermolit/main/home.html#draft/report (accessed June 2, 2021).

Lobo LQ, Ferreira AGM, Fonseca IMA, Senra AMP. Vapour pressure and excess Gibbs free energy of binary mixtures of hydrogen sulphide with ethane, propane, and n-butane at temperature of 182.33K. J Chem Thermodyn 2006;38:1651–4. https://doi.org/10.1016/j.jct.2006.03.013.

Robinson DB, Hughes RE, Sandercock J a. W. Phase behavior of the n-butane-hydrogen sulphide system. Can J Chem Eng 1964;42:143–6. https://doi.org/10.1002/cjce.5450420402.

Leu AD, Robinson DB. Equilibrium phase properties of the n-butane-hydrogen sulfide and isobutane-hydrogen sulfide binary systems. J Chem Eng Data 1989;34:315–9. https://doi.org/10.1021/je00057a017.

Dicko M, Coquelet C, Theveneau P, Mougin P. Phase Equilibria of H2S-Hydrocarbons (Propane, n-Butane, and n-Pentane) Binary Systems at Low Temperatures. J Chem Eng Data 2012;57:1534–43. https://doi.org/10.1021/je300111m.

Zudkevitch D, Wilson G. Phase equilibria in solutions of methyl mercaptan and light hydrocarbons, Denver, Colorado, USA: 1974, p. 101–3.

Giles NF, Wilson GM. Phase Equilibria on Seven Binary Mixtures. J Chem Eng Data 2000;45:146–53. https://doi.org/10.1021/je990221o.

Giles NF, Wilson LC, Wilson GM, Wilding WV. Phase Equilibria on Eight Binary Mixtures. J Chem Eng Data 1997;42:1067–74. https://doi.org/10.1021/je970028z.

Valtz A, Guilbot P, Richon D. Vapor-Liquid Equilibria for Volatile Sulfur-containing Systems. III. Butane - Sulfur Compounds Containing Systems. IV. Hydrocarbon - Hydrocarbon - Sulfur Compounds Containing Systems. V. Hydrocarbon - Hydrogen Sulfide Compounds Containing Systems. Gas Processors Association; 1998.

Penttilä A, Uusi-Kyyny P, Pokki J-P, Pakkanen M, Alopaeus V. Isothermal Binary Vapor−Liquid Equilibrium for 2-Methylpropane and n-Butane with 1,2-Ethanedithiol and 2-Methyl-2-propanethiol. J Chem Eng Data 2010;55:291–6. https://doi.org/10.1021/je9003417.

Haimi P, Uusi-Kyyny P, Pokki J-P, Pakkanen M, Aittamaa J, Keskinen KI. Isothermal binary vapour–liquid equilibrium for butanes and butenes with dimethylsulphide. Fluid Phase Equilibria 2008;266:143–53. https://doi.org/10.1016/j.fluid.2008.01.030.

Uusi-Kyyny P, Sapei E, Pokki J-P, Pakkanen M, Alopaeus V. Vapor−Liquid Equilibrium for Dimethyl Disulfide + Butane, + trans-But-2-ene, + 2-Methylpropane, + 2-Methylpropene, + Ethanol, and 2-Ethoxy-2-methylpropane. J Chem Eng Data 2011;56:2501–10. https://doi.org/10.1021/je200039y.

Besserer GJ, Robinson DB. The equilibrium phase properties of the i-butane-hydrogen sulfide system. J Chem Eng Jpn 1975;8:11–5. https://doi.org/10.1252/jcej.8.11.

Brooks FR, Nixon AC. Boiling Point and Composition of Methanethiol—Isobutane Azeotrope. J Am Chem Soc 1953;75:480–480. https://doi.org/10.1021/ja01098a502.

Zhang F, Théveneau P, El Ahmar E, Canet X, Soo C-B, Coquelet C. An improved static–analytic apparatus for vapor–liquid equilibrium (PTxy) measurement using modified in-situ samplers. Fluid Phase Equilibria 2016;409:425–33. https://doi.org/10.1016/j.fluid.2015.10.041.

Théveneau P, Valtz A, Coquelet C. Vapor Liquid Equilibrium Data for the Furan–Toluene Binary System between 313.02 and 352.99 K. J Chem Eng Data 2017;62:1168–72. https://doi.org/10.1021/acs.jced.6b00424.

Théveneau P, Legendre H. Dispositif pour prélever des micro-échantillons d’un fluide à l’état liquide contenu dans un containeur. FR1460309, 2016.

Mathias PM. Guidelines for the Analysis of Vapor–Liquid Equilibrium Data. J Chem Eng Data 2017;62:2231–3. https://doi.org/10.1021/acs.jced.7b00582.

van Ness HC, Byer SM, Gibbs RE. Vapor-Liquid equilibrium: Part I. An appraisal of data reduction methods. AIChE J 1973;19:238–44. https://doi.org/10.1002/aic.690190206.

Downloads

Published

2021-09-03

How to Cite

1.
Neyrolles E, Valtz A, Boonaert E, Coquelet C. Experimental Measurements and Modeling of Vapor-Liquid Equilibrium of Isobutane and Ethyl Mercaptan Binary System. Int. J. Petrol. Technol. [Internet]. 2021Sep.3 [cited 2021Sep.16];8:43-54. Available from: https://www.avantipublishers.com/jms/index.php/ijpt/article/view/993

Issue

Section

Articles