How to Determine Individual Risk Due to Toxic, Fire, and Explosion Accidents in a Hydrocarbon Processing Area?

Authors

  • Julio Ariel Dueñas Santana University of Matanzas, Matanzas, Cuba
  • Amelia González Miranda University of Matanzas, Matanzas, Cuba
  • Jesús Luis Orozco University of Matanzas, Matanzas, Cuba
  • Yanelys Cuba Arana University of Matanzas, Matanzas, Cuba
  • Dainelys Febles Lantigua University of Matanzas, Matanzas, Cubal
  • Jonathan Serrano Febles University of Matanzas, Matanzas, Cuba

DOI:

https://doi.org/10.15377/2409-787X.2020.07.6

Keywords:

accidents, domino effect, Bayesian network, individual risk, fire, explosion

Abstract

Accidents in the processing and storage of hydrocarbons can cause severe damage to people, not only within the facility but also in nearby places. In those cases, the occurrence of a major accident is considered. Moreover, there are many studies on how to determine the impact on people of these types of events. However, there is a real need to establish a methodology that integrates risk analysis techniques with other artificial intelligence ones and, in this way, to include the likelihood of the domino effect. For this reason, this research aims to determine the individual risk due to the domino effect of toxic, fire, and explosion accidents that can occur in a hydrocarbon processing area. For this purpose, a logical sequence of analysis of eight fundamental stages was made. In addition, the Bayesian and Petri networks are developed to determine the joint probability of the domino effect at different levels and the damages caused by toxicity, respectively. Finally, the individual risk is obtained, expressed using isorisk maps. As main results, these maps confirm that three deaths can occur up to 200 meters, while 250 will cause approximately four in just 10 years, values that decrease to 500 meters and are considered high according to specialized literature. Hence, this methodology is vital to quantify the possible damages of toxic accidents, fires, and explosions on people in the hydrocarbon processing industry.

Author Biographies

Julio Ariel Dueñas Santana, University of Matanzas, Matanzas, Cuba

Chemical Engineering Degree student

Amelia González Miranda, University of Matanzas, Matanzas, Cuba

Master’s Degree Student

Jesús Luis Orozco, University of Matanzas, Matanzas, Cuba

Chemical Engineering Department

Yanelys Cuba Arana, University of Matanzas, Matanzas, Cuba

Chemical Engineering Degree student

Dainelys Febles Lantigua, University of Matanzas, Matanzas, Cubal

Master’s Degree Student

Jonathan Serrano Febles, University of Matanzas, Matanzas, Cuba

Chemical Engineering Department.

References

Gómez Mares, M. Estudio experimental y modelización matemática de dardos de fuego. (PhD Thesis). Universidad Politécnica de Catalunya, Barcelona. Spain 2009.

Villafañe Santander, D. Estudio de la dispersión e incendio de nubes inflamables de gas (GNL y GLP). (PhD Thesis). Universidad Politécnica de Catalunya, Barcelona. Spain. 2013.

Dueñas Santana, J.A., Orozco, J.L., Febles Lantigua, D., Furka, D., Furka, S.. García Cruz, A. Using Integrated Bayesian-Petri Net methodology for individual impact assessment of domino effect accidents. Journal of Cleaner Production. 2021 https://doi.org/10.1016/j.jclepro.2021.126236.

Dueñas Santana, J.A., Orozco, J.L., Furka, D., Furka, S., Boza Matos, Y.C., Febles Lantigua, D., González Miranda, A., Barrera González, M.C. A new Fuzzy- Bayesian approach for the determination of failure probability due to thermal radiation in domino effect accidents. Engineering Failure Analysis. 2021. https://doi.org/10.1016/j.engfailanal.2020.105106.

Mukhim Euginia, D., Abbasi, T., Tauseef, S.M. y Abbasi, S.A. Domino effect in chemical process industries triggered by overpressure- formulation of equipment-specific probits. Process Safety and Environment Protection, 2017; 1-37, http://dx.doi.org/10.1016/j.psep.2017.01.004.

Darbra RM, Palacios A. y Casal, J. Domino effect in chemical accidents: Main features and accident. Journal of Hazardous Materials, 2010; 183, 565-573.

Zhou, Y., Zhao, X., Zhao, J. y Chen, D. Research on Fire and Explosion Accidents of Oil Depots. Chemical Engineering Transactions. 2016; 51, 1-6. 10.3303/CET1651028.

Zapivalov. N.P.Petroleum Geology: Science and Practice in the 21st Century. New Ideas and Paradigms. International Journal of Petroleum Technology. 2015. http://dx.doi.org/10.15377/2409-787X.2015.02.02.1

Gelu PASA. Some Contradictions in the Multi-Layer Hele-Shaw Flow. International Journal of Petroleum Technology. 2019. https://doi.org/10.15377/2409-787X.2019.06.5

Li Rong, Yang Sen, Gong Hao, Yang Lei, Wang Jiahao, Liu Limin. Volume Fracturing Technology Application in the World's Largest Conglomerate Oil Field, Northwest of China. 2020. https://doi.org/10.15377/2409-787X.2020.07.4.

Khakzad, N., Amyotte, P., Cozzani, V., Reniers, G. y Pasman, H. How to address model uncertainty in the escalation of domino effects? Journal of Loss Prevention in the Process Industries, 2018; 1-28. 10.1016/j.jlp.2018.03.001.

Cui, Y., Quddus, N. y Mashuga, Ch. V. Bayesian network and game theory risk assessment model forthird-party damage to oil and gas pipelines. Process Safety and Environmental Protection, 2020; 134, 178-188. https://doi.org/10.1016/j.psep.2019.11.038.

Kabir, S. y Papadopoulos, Y. Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review. Safety Science, 2019; 115, 154-175. https://doi.org/10.1016/j.ssci.2019.02.009

Villa, V. y Cozzani, V. Application of Bayesian Networks to Quantitative Assessment of Safety Barriers’ Performance in the Prevention of Major Accidents. Chemical Engineering Transactions, 2016; 53, 151-156. 10.3303/CET1653026.

Baldan, P., Bocci, M., Brigolin, D., Cocco, N. y Simeoni, M. Petri nets for modelling and analyzing trophic networks. BioPPN 2015, a satellite event of Petri Nets, CEUR Workshop Proceedings.2015; 1373.

Khakzad, N., Khan, F. y Amyotte, P. Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches. Reliability Engineering and System Safety, 96, 925-932. 2011. 10.1016/j.ress.2011.03.012

Khakzad, N., Khan, F. y Amyotte, P. Dynamic safety analysis of process systems by mapping bow-tie into Bayesian network. Process Safety and Environmental Protection, 91, 46-53. 2013.10.1016/j.psep.2012.01.005.

Khakzad, N. Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures. Reliability Engineering and System Safety, 1-32. 2015. http://dx.doi.org/10.1016/j.ress.2015.02.007.

Hu, J., Zhang, L., Cai, Z., Wang, Y. y Wan, A. Fault propagation behavior study and root causereasoning with dynamic Bayesian network basedframework. Process Safety and Environmental Protection, 2015. 1-12. http://dx.doi.org/10.1016/j.psep.2015.02.003.

Guo, Y., Meng, X., Wang, D., Meng, T., Liu, S. y He, R. Comprehensive risk evaluation of long-distance oil and gas transportation pipelines using a fuzzy Petri net model. Journal of Natural Gas Science and Engineering Elsevier, 2016. 1-42. 10.1016/j.jngse.2016.04.052.

Elusakin, T. y Shafiee, M. Reliability analysis of subsea blowout preventers with condition-based maintenance using stochastic Petri nets. Journal of Loss Prevention in the Process Industries, 1-29. 2019. https://doi.org/10.1016/j.jlp.2019.104026.

Leoni, L., Bahoo Toroody, A., De Carlo, F. y Paltrinieri, N. Developing a risk-based maintenance model for a Natural Gas Regulating and Metering Station using Bayesian Network. Journal of Loss Prevention in the Process Industries, 2018; 1-23. https://doi.org/10.1016/j.jlp.2018.11.003.

Shi, J., Zhu, Y., Khan, F. y Chen, G. Application of Bayesian Regularization Artificial Neural Network in explosion risk analysis of fixed offshore platform. Journal of Loss Prevention in the Process Industries, 2018; 1-40. https://doi.org/10.1016/j.jlp.2018.10.009.

Simon, Ch., Mechri, W. y Capizzi, G. Assessment of Safety Integrity Level by simulation of Dynamic Bayesian Networks considering test duration. Journal of Loss Prevention in the Process Industries, 2019; 1-32. https://doi.org/10.1016/j.jlp.2018.11.002.

Wang, Y., Yang, H., Yuan, X. y Cao, Y. An improved Bayesian network method for fault diagnosis. IFAC Papers Online, 2018; 51-21,341-346. www.sciencedirect.com.

Zarei, E., Khakzad, N., Cozzani,V. y Reniers, G. Safety analysis of process systems using Fuzzy Bayesian Network (FBN). Journal of Loss Prevention in the Process Industries, 2018; 1-37. https://doi.org/10.1016/j.jlp.2018.10.011.

Lees, F.P. Loss prevention in the process industries: Hazard identification, assessment and control, fourth edition. ED. Mannan S., Elsevier Butterworth-Heinemann.2012.

López López, J. Análisis Cuantitativo de riesgos de Tuberías de Transporte de Substancias Peligrosas. (Chemical Engineering Degree Thesis).2017.

Renda, E., Rozas Garay, M. y Torchia, N. P. (2017). Manual para elaboración de mapas de riesgos. Buenos Aires: Programa Naciones Unidas para el Desarrollo PNUD; Argentina: Ministerio de Seguridad de la Nación. ISBN 978-987-1560-75-2. 2017

Reniers, G. y Cozzani, V. Features of Escalation Scenarios. Domino Effects in the Process Industries, 2013; 1-13. http://dx.doi.org/10.1016/B978-0-444-54323-3.00003-8.

Rehman, A., Seay, J. y Badurdeen, F. Application of Bayesian Belief Network for the Analysis of Accident Data in the Bioenergy Manufacturing Sector. Chemical engineering Transactions, 2018; 65, 349-354. 10.3303/CET1865059.

Vieira Araujo, E. M., Norte da Silvaa J. M. y , Bueno da Silvaa L. Modeling Bayesian Networks from a conceptual framework for occupational risk analysis. Production, 2017; 27, e20162239. http://dx.doi.org/10.1590/0103-6513.223916.

Hugin. (2019). Gasvaerksvej 5. DK-9000 Aalborg. Denmark. Lite 8.7.

Spirtes, P; Glymour, C y Scheines, R. Causación, predicción y búsqueda. MIT Press, computación adaptativa y aprendizaje automático. Segunda edición.2000

Khakzad, N., Khan, F., Amyotte, P., Cozzani, V. Domino effect analysis using Bayesian netwroks. Risk Analysis. 2012. https://doi.org/10.1111/j.1539-6924.2012.01854.x.

ALOHA. (2016). EPA Software. www.epa.govcameoaloha-software

HSE. Methods of approximation and determination of human vulnerability for offshore major accident hazard assessment. Health and Safety Executive.2016

HSE. Annual Science Review. Helping Great Britain work we. 2018. http://www.hse.gov.uk/horizons/.

Hemmatian, B., Planas-Cuchi, E. y Casal, J. Fire as a primary event of accident domino sequences: the case of BLEVE. Centre for Technological Risk Studies (CERTEC), 2015; 1-29. Universitat Politécnica de Catalunya ETSEIB-UPC. Diagonal 647.08028-Barcelona, Spain

Kadri, F., Chatelet, E. y Lallement, P. The Assessment of Risk Caused by Fire and Explosion in Chemical Process Industry: A Domino Effect-Based Study. Journal of Risk Analysis and Crisis Response, 2013; (2), 66-76. http://www.agence-nationale-recherche.fr

BEVI. Reference Manual Bevi Risk AssessmentsVersión 3.2. National Institute of Public Health and the Environment (RIVM).2009.

Wells, G. Major Hazards and their management. Houston, Texas: Gulf Publishing Company.2003

Cai, B., Liu, Y. y Fan, Q. A multiphase dynamic Bayesian networks methodology for the determination of safety integrity levels. Reliability Engineering and System Safety. 2018; http://dx.doi.org/10.1016/j.ress.2016.01.018.

Kabir, G., Sadiq, R. y Tesfamariam, S . A fuzzy Bayesian belief network for safety assessment of oil and gas pipelines. Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance, 2015; 1-17. 10.1080/15732479.2015.1053093.

Zerrouki, H. y Smadi, H. Bayesian Belief Network Used in the Chemical and Process Industry: A Review and Application. J Fail. Anal. and Preven., 2016; 1-7. 10.1007/s11668-016-0231-x.

Zhou, J. y Reniers, G. Petri-net based cascading effect analysis of vapor cloud explosions. Journal of Loss Prevention in the Process Industries, 2017; 48, 118-125. http://dx.doi.org/10.1016/j.jlp.2017.04.017

Zhou, J. y Reniers, G. Petri-net based evaluation of emergency response actions for preventing domino effects triggered by fire. Journal of Loss Prevention in the Process Industries Elsevier, 2018; 51, 94-101. https://doi.org/10.1016/j.jlp.2017.12.001.

Downloads

Published

2021-12-31

How to Cite

1.
Julio Ariel Dueñas Santana, Amelia González Miranda, Jesús Luis Orozco, Yanelys Cuba Arana, Dainelys Febles Lantigua, Jonathan Serrano Febles. How to Determine Individual Risk Due to Toxic, Fire, and Explosion Accidents in a Hydrocarbon Processing Area? . Int. J. Petrol. Technol. [Internet]. 2021Dec.31 [cited 2021Sep.26];7(1):60-73. Available from: https://www.avantipublishers.com/jms/index.php/ijpt/article/view/953

Issue

Section

Articles