Mass Transfer Resistances at the Boundary of a Fractured Porous Medium

Authors

  • Epifanio Morales-Zárate Universidad Veracruzana
  • Gilberto Espinosa-Paredes Universidad Autónoma Metropolitana-Iztapalapa

DOI:

https://doi.org/10.15377/2409-787X.2014.01.01.1

Keywords:

Averaging volume, fractured porous media, surface transport equation, mass transfer, numerical model, interfacial effects.

Abstract

The aim of this paper is the study of the mass transfer resistance effects at the boundary of a fractured porous media. The boundary between the porous media adjacent to the fluid considers the transient effects. The numerical experiments show that the  parameter has an influence that facilitates the mass transfer of the porous region to the fluid region. The  parameter expresses the relation of the mass transfer resistances between the porous media and the homogeneous fluid; in the present work it is considered as a parameter which facilities mass transfer of the porous region to the fluid region.

Author Biographies

Epifanio Morales-Zárate, Universidad Veracruzana

Ciencias Químicas Región Xalapa

Gilberto Espinosa-Paredes, Universidad Autónoma Metropolitana-Iztapalapa

de Ingeniería de Procesos e Hidráulica

References

Rangel-German ER, Kovscek AR. Water Infiltration in Fractured Systems: Experiments and Analytical Model. In: SPE Annual Technical Conference and Exhibition. New Orleans – Louisiana 2001. http://dx.doi.org/10.2118/71618-MS

Kaya E, Zarrouk SJ, O'Sulliva. MJ. Reinjection in geothermal fields: A review of worldwide experience. Renewable and Sustainable Energy Reviews 2011; 15: 47-68. http://dx.doi.org/10.1016/j.rser.2010.07.032

Beavers G, Joseph D. Boundary conditions at a naturally permeable Wall, J. Fluid Mech 1967; 30: 197- 207. http://dx.doi.org/10.1017/S0022112067001375

Neale G, Nader W. Practical signicance of Brinkman´s extension of Darcy´s law: coupled parallel flows within a channel and a bounding porous medium. Can J Chem Energ 1974; 52: 475-478. http://dx.doi.org/10.1002/cjce.5450520407

Vafai K, Tien CL. Boundary and inertia effects on flow and heat transfer in porous media. Int J Heat Mass Transfer 1981; 24: 195-203. http://dx.doi.org/10.1016/0017-9310(81)90027-2

Haber S, Mauri R. Boundary conditions for Darcy´s flow through porous media. Int J Multiphase Flow 1983; 9: 561- 574. http://dx.doi.org/10.1016/0301-9322(83)90018-6

Poulikakos D, Kazmierczak M. Forced convection in a duct partially filled with a porous material. J Heat Transfer 1987; 109: 653-662. http://dx.doi.org/10.1115/1.3248138

Prat M. On the boundary conditions at the macroscopic level. Transport in Porous Media 1989; 4: 259-280. http://dx.doi.org/10.1007/BF00138039

Vafai K. Kim SJ. Fluid mechanics of the interface region between a porous medium and a fluid layer – an exact solution. Int J Heat Fluid Flow 1990; 11: 254-256. http://dx.doi.org/10.1016/0142-727X(90)90045-D

Prat M. Some refinements concerning the boundary conditions at the macroscopic level. Transport in Porous Media 1992; 7: 147-161. http://dx.doi.org/10.1007/BF00647394

Jang JY, Chen JL. Forced convection in a parallel plate channel partially filled with a high porosity medium. Int Commun Heat Mass Transfer 1992; 19: 263-273. http://dx.doi.org/10.1016/0735-1933(92)90037-I

Sahraoui M, Kaviany M. Slip and no slip temperature boundary conditions at the interface of porous, plain media: Convection. Int Heat Mass Trans 1994; 37: 1029-1044. http://dx.doi.org/10.1016/0017-9310(94)90227-5

Kuznetsov AV. Analytical investigation of the fluid flow in the interface region between a porous medium and a clear fluid in channels partially filled with a porous medium. Appl Sci Res 1996; 56: 53-67. http://dx.doi.org/10.1007/BF02282922

Alazmi B, Vafai K. Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int J Heat Mass Trans 2001; 44: 1735-1749. http://dx.doi.org/10.1016/S0017-9310(00)00217-9

Espinosa-Paredes G. Jump mass transfer for double emulsion systems. International Mathematical Forum 2 2007; (32): 1553-1570.

Espinosa-Paredes G, Morales-Zárate E, Vázquez-Rodríguez A. Analytical Analysis for Mass Transfer in a Fractured Porous Medium. Petroleum Science and Technology 2013; 31: 2004-2012. http://dx.doi.org/10.1080/10916466.2011.557681

Gwo JP, O’Brien R, Jardine PM. Mass transfer in structured porous media: Embedding mesoscale structure and microscale hydrodynamics in a two-region model. J Hydrologic 1998; 208: 204-222. http://dx.doi.org/10.1016/S0022-1694(98)00161-9

Gibbs JW. The Collected Works of J. Willard Gibbs, vol. 1, Yale University Press, New Haven, Connecticut 1928.

Slattery JC. Interfacial Transport Phenomena. Springer- Verlag, New-York 1990.

Kaviany M. Principles of Heat Transfer in Porous Media, (Second Edition) Springer-Verlang, New York 1995. http://dx.doi.org/10.1007/978-1-4612-4254-3

Downloads

Published

2014-11-17

How to Cite

1.
Morales-Zárate E, Espinosa-Paredes G. Mass Transfer Resistances at the Boundary of a Fractured Porous Medium. Int. J. Petrol. Technol. [Internet]. 2014Nov.17 [cited 2021Jun.17];1(1):3-7. Available from: https://www.avantipublishers.com/jms/index.php/ijpt/article/view/109

Issue

Section

Articles