Fabrication and Characterization of Thin-Film SOFC Supported by Microchannel-Structured Zirconia Substrate for Direct Methane Operation

Authors

  • Myongjin Lee Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
  • Yun Gan Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
  • Chunyang Yang Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
  • Chunlei Ren Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
  • Xingjian Xue Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA

DOI:

https://doi.org/10.15377/2409-787X.2021.08.6

Keywords:

Stability, Ni-ZrSDC Anode, Hydrocarbon Fuels, Microtubular SOFC, Microchanneled Inert Support.

Abstract

Ni-cermet anode demonstrates excellent catalytic activity and electrical conductivity but suffers from carbon deposition issue. To utilize Ni-cermet anode while preventing carbon deposition, a synergic strategy is employed to design anode electrode. In particular, Zr is incorporated into Ce0.8Sm0.2O2-δ lattice to tailor oxygen storage and catalytic properties of Ni-Ce0.8-xSm0.2ZrxO2-δ anode for improving electrochemical oxidizations of various fuel species. An inert thick YSZ microtubular substrate with radially well-aligned microchannels open at the inner surface is used to support multi thin functional layers of solid oxide cell, i.e., Ni current collector, Ni-Ce0.8-xSm0.2ZrxO2-δ anode, YSZ/SDC electrolyte, and LSCF cathode. The thick YSZ substrate is able to inhibit the ratio of fuel to product gases in the thin anode functional layer, which favors the prevention of carbon buildup in the thin anode layer when synergistically combined with Ni-Ce0.8-xSm0.2ZrxO2-δ anode material. The microchannels embedded in the YSZ substrate can also avoid too much dilutions of the fuel in the anode functional layer. The cell is fabricated and tested with both hydrogen and methane as the fuel. A short-term test is conducted with methane as fuel and good stability is obtained. The fundamental mechanisms for the prevention of carbon buildup in anode functional layer are also discussed.

References

Ormerod RM. Chem Soc Rev. 2003; 32: 17. https://doi.org/10.1177/1030570X0301600102

Minh N. Solid State Ionics, 2004; 174: 271. https://doi.org/10.1016/j.ssi.2004.07.042

Zhan Z, Barnett SA. Science, 2005; 308: 844. https://doi.org/10.1126/science.1109213

Nakagawa N. Ishida M. Ind Eng Chem Res. 1988; 27: 1181. https://doi.org/10.1021/ie00079a016

Yang L, Wang S, Blinn K, Liu M, Liu Z, Cheng Z, Liu M. Science 2009; 326: 126. https://doi.org/10.1126/science.1174811

Takeguchi T, Kikuchi R, Yano T, Eguchi K, Murata K. Catal Today 2003; 84: 217. https://doi.org/10.1016/S0920-5861(03)00278-5

Sumi H, Yamaguchi T, Hamamoto K, Suzuki T, Fujishiro Y. J Power Sources 2012; 220: 74. https://doi.org/10.1016/j.jpowsour.2012.07.106

Kim Y, Kim JH, Bae J, Yoon CW, Nam SW. J. Phys Chem C 2012; 116: 13281. https://doi.org/10.1021/jp3035693

Miao H, Liu G, Chen T, He C, Peng J, Ye S, Wang WG. J Solid State Electrochem. 2015; 19: 639. https://doi.org/10.1007/s10008-014-2640-7

Myung J, Kim SD, Shin TH, Lee D, Irvine JTS, Moon J, Hyun SH. J Mater Chem A 2015; 3: 13801. https://doi.org/10.1039/C4TA06037G

Zhu H, Wang W, Ran R, Shao Z. Int J Hydrog Energy, 2013; 38: 3741. https://doi.org/10.1016/j.ijhydene.2013.01.032

Suzuki T, Yamaguchi T, Hamamoto K, Fujishiro Y, Awano M, Sammes N. Energy Environ Sci. 2011; 4: 940. https://doi.org/10.1039/C0EE00231C

Wang K, Ran R, Shao Z. J Power Sources 2007; 170: 251. https://doi.org/10.1016/j.jpowsour.2007.03.070

Yoon D, Manthiram A. Energy Environ Sci. 2014, 7, 3069. https://doi.org/10.1039/C4EE01455C

Ma J, Jiang C, Connor PA, Cassidy M, Irvine JTS. J Mater Chem A 2015; 3: 19068. https://doi.org/10.1039/C5TA06421J

Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ. J Electrochem Soc. 2002; 149: A247. https://doi.org/10.1149/1.1445170

Nikolla E, Schwank J, Linic S. J Electrochem Soc. 2009; 156: B1312. https://doi.org/10.1149/1.3208060

Wu X, Zhou X, Tian Y, Kong X, Zhang J, Zuo W. Int J Hydrog Energy 2015; 40: 16484. https://doi.org/10.1016/j.ijhydene.2015.09.121

Qiao J, Zhang N, Wang Z, Mao Y, Sun K, Yuan Y. Fuel Cells, 2009; 9: 729. https://doi.org/10.1002/fuce.200800104

Tao S, Irvine JTS. Nat Mater, 2003; 2: 320. https://doi.org/10.1038/nmat871

Atkinson A, Barnett S, Gorte RJ, Irvine JTS, McEvoy AJ, Mogensen M, et al. Nat Mater. 2004; 3: 17. https://doi.org/10.1038/nmat1040

Huang YH, Dass RI, Xing ZL, Goodenough JB. Science 2006; 312: 254. https://doi.org/10.1126/science.1125877

Sengodan S, Choi S, Jun A, Shin TH, Ju YW, Jeong HY, et al. Nat Mater. 2015; 14: 205. https://doi.org/10.1038/nmat4166

Dong G, Yang C, He F, Jiang Y, Ren C, Gan Y, et al. RSC Adv. 2017; 7: 22649. https://doi.org/10.1039/C7RA03143B

Wang W, Su C, Wu Y, Ran R, Shao Z. Chem Rev. 2013; 113: 8104. https://doi.org/10.1021/cr300491e

McIntosh S, Gorte RJ. Chem Rev. 2004; 104: 4845. https://doi.org/10.1021/cr020725g

Lin Y, Zhan Z, Barnett SA., J Power Sources 2006; 158: 1313. https://doi.org/10.1016/j.jpowsour.2005.09.060

Zhu H, Colclasure AM, Kee RJ, Lin Y, Barnett SA. J Power Sources 2006; 161: 413. https://doi.org/10.1016/j.jpowsour.2006.04.101

Bierschenk DM, Pillai MR, Lin Y, Barnett SA. Fuel Cells, 2010; 10: 1129. https://doi.org/10.1002/fuce.201000005

Novik NN, Konakov VG, Archakov IY. Rev Adv Materi Sci. 2015; 40: 188.

Zhao K, Du Y. J Power Sources 2017; 347: 79. https://doi.org/10.1016/j.jpowsour.2017.01.113

Larrondo S, Vidal M, Irigoyen B, Craievich AF, Lamas DG, Fabregas IO, et al. Catal Today, 2005; 107: 53. https://doi.org/10.1016/j.cattod.2005.07.110

Laguna OH, Sarria FR, Centeno MA, Odriozola JA. J Catalysis 2010; 276: 360. https://doi.org/10.1016/j.jcat.2010.09.027

Venkataramana K, Madhusudan C, Madhuri C, Reddy CV. Materials Today: Proceedings 3, 2016; 3: 3908. https://doi.org/10.1016/j.matpr.2016.11.048

Ren C, Gan Y, Lee M, Yang C, He F, Jiang Y. et al. J Electrochem Soc. 2016; 163: F1115 https://doi.org/10.1149/2.1271609jes

Ren C, Gan Y, Yang C, Lee M, Dong G, Xue X. J Electrochem Soc. 2017; 164: F722. https://doi.org/10.1149/2.0311707jes

Ren C, Gan Y, Yang C, Lee M, Green RD, Xue X. J Appl Electrochem. 2018; 48: 959. https://doi.org/10.1007/s10800-018-1225-z

Lee MJ, Jung JH, Zhao K, Kim BH, Xu Q, Ahn BG, et al. J Eur Ceram Soc. 2014; 34: 1771. https://doi.org/10.1016/j.jeurceramsoc.2013.12.042

Panthi D, Choi B, Tsutsumi A. J Solid State Electrochem. 2017; 21: 255. https://doi.org/10.1007/s10008-016-3366-5

Downloads

Published

2021-10-12

How to Cite

1.
Lee M, Gan Y, Yang C, Ren C, Xue X. Fabrication and Characterization of Thin-Film SOFC Supported by Microchannel-Structured Zirconia Substrate for Direct Methane Operation. Int. J. Petrol. Technol. [Internet]. 2021Oct.12 [cited 2021Oct.16];8:80-92. Available from: https://www.avantipublishers.com/jms/index.php/ijpt/article/view/1063

Issue

Section

Articles