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Abstract: Hydrotreating of gasoil is one of the most important processes in petroleum refining; it helps to improve the 
characteristics of diesel fuel to make it meet the required specifications and pollution standards. Modelling of this 
process would, among other things, allow to predict the product quality as a function of different process variables 
(temperature, pressure, space velocity). There are several modelling techniques, among them the Black Box type 
modelling by Artificial Neural Networks (ANNs), which is used to model the hydrotreating process at pilot scale. The 
approach used in this work is an artificial intelligence approach. The model developed is a neural network Multi Layer 
Perceptron (MLP) type. Network learning (NL) is carried out according to the Backpropagation Gradient algorithm with 
momentum; The Early Stopping (ES) technique has been used to prevent the effect of overfitting and thereby ensure a 
good generalization of the model. Experimental and predicted results show good agreement with an error not exceeding 
4%.  
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INTRODUCTION  

Gas oil hydrotreating process is a catalytic process, 
in which gas oil obtained from either primary distillation 
of crude oil or conversion processes (visbreaking, 
coking and catalytic cracking), is treated under 
hydrogen pressure [1-3]. This process helps obtain a 
quality diesel fuel with low contents of sulphur, 
nitrogen, aromatics and olefins together with a better 
stability and a high cetane number (CN) [1]. 

The process of gas oil hydrotreating has known in 
recent years considerable development, as a result of 
changing pollution standards which are becoming 
increasingly more stringent particularly in Europe and 
the USA (Table 1) [2,4]. Great efforts are expanded by 
the largest refining companies and reputable research 
laboratories, to improve and develop technologies and 
process catalysts, reflecting the importance of such a 
process in refining. 

Sulphur more specifically sulphur dioxide SO2 is a 
major among those particular products that contribute 
to pollution. Its concentration in gas oil is the object of 
strict regulations which seek to limit gas emissions of 
SO2 of car exhausts [5]. When transformed first into 
sulphur trioxide SO3 then mixed with exhaust water 
vapour, it produces sulphuric acid [5]. This acid 
pollution can then be transported by wind over several 
hundred kilometres and made to fall as acid rain. 
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Sulphur dioxide causes respiratory diseases and can 
worsen cardio vascular ones [6]. On the other hand, 
sulphur has a negative effect on the proper operation of 
the catalytic converter itself whose main function is to 
reduce pollutant gas emissions in to the atmosphere. 
Furthermore, the presence of appreciable quantities of 
SO2 in the fuel easily oxidable into SO3 can poison the 
catalysts of the catalytic converter [6,7]. Sulphur of 
straight run (SR) fractions derived directly from 
atmospheric distillation is strongly depending on that of 
crude oil. However, it has been noticed that gas oil 
contains about twice less sulphur than the crude from 
which it is derived [8]. Up until 1994 gas oil 
specifications allowed a sulphur content of up to about 
0.2-0.3 %. Current legislation requires a content of no 
more than 0.05 %, which entails new process design 
and a modification of the operation of existing industrial 
units [9]. Table 2 shows the progressive development 
of specifications on sulphur levels in gasoline and 
diesel in the European Union [10]. 

Although reaching such a low level of sulphur 
content requires setting up hydro desulphurization units 
operating under relatively more stringent conditions. 
Until recently, reduction of sulphur content in gas oil 
was beneficial to the engine against risks of corrosion 
wear. However, marketing of highly desulphurized gas 
oil has led to other corrosion effects affecting the 
injection system and no longer the engine. These 
effects will appear in the form of sticking of injection 
pumps caused by wear effects and taking place after 
several thousands km of run [11.12]. Therefore 
hydrotreating by the desulphurization process of gas oil 
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is highly desirable even necessary to reduce particulate 
emissions and risk of corrosive wear of diesel engines 
& injection systhems. 

The hydrotreating catalysts are composed of an 
oxide support and an active phase in the form of 
molybdenum sulphide or tungsten enhanced by cobalt 
or nickel. Commonly used formulas are the 
associations CoMo, NiMo and NiW for the active phase 
and alumina γ with large specific surface area for the 
support [13,14].  

In industry, the most widely used catalyst for the 
hydrotreatment of gas oil fuel is the CoMo / Alumina, 
but now with the new specifications endorses, this 
catalyst performance is no longer satisfactory. 
Therefore its doping with phosphorous is necessary. 
Indeed a new catalyst of the formula CoMoP/Al2O3 and 
referenced C-606a [15] has been marketed in Japan. It 
is characterized by high activity and great stability; it 
also allows the production of a fuel with sulphur content 
below 10 ppm. 

Another method has been developed for improving 
hydrotreating catalysts performance by their doping 
with noble metals such as Platinum (Pt) and Rutheium 
(Ru). The adding effects of transition metals such as 
nickel, ruthenium and tungsten CoMo/γ-Al2O3 [16] to a 
commercial catalyst has been studied in terms of 
activity in sulphur removal. Improved catalytic 
performance has been achieved; and several catalysts 
have been developed, such as the following catalysts: 
PtMo/Al2O3 and RuMo/Al2O3, RuCoMo/ Al2O3 but are 
still not yet used in industry [17-19]. 

On the other hand, a two-stage hydrotreatment 
using the same catalyst for each stage CoMo/Al2O3 
allows to obtain a good quality gas oil fuel. Excellent 
results have been achieved particularly for the 
hydrodesulphurization; gas oil fuel with sulphur content 
below 10 ppm have been produced [20].  

Given its importance in refining, several models of 
gas oil hydrotreating process have been developed 
[21-24]. These models are based on the laws of 
chemical kinetics and the equations of mass transfer 
between the phases in the hydrotreating reactor. They 
allow to predict product characteristics (content in 
sulphur, aromatics, and olefins) as a function of the 
different operating variables such as temperature, 
space velocity and hydrogen partial pressure. These 
models are often used for simulation of industrial 
hydrotreating units.  

Nevertheless, these latter present a great 
disadvantage in that each model is specific to the gas 
oil for which it has been developed. This is due 
essentially to the assumptions made in order to simplify 
mathematical equations governing the process. For 
e.g. in the model presented by Murali et al. [24] all 
sulphur compounds present in the gas oil fuel 
(mercaptans, thiophenes, benzothiophene, dibenzo-
thiophenes.) are considered as one pseudo-
component. During a change in the load composition, 
the model provides meaningless results for the pseudo-
component chosen is no longer representing the new 
gas oil sulphur compounds. 

 

Table 1: Changing Diesel Fuel Specifications in Europe and the U.S. (a) [2], (b) [4] 

 Europe (a) USA (b) Gas oil characteristics 

 1996 2000 2005 1993 2006 

Cetane index 
Aromatics (% vol)  

Polyaromatics (% poids) 
Sulphur (ppm)  

 49 
 - 

 Unspecified 
 500 

51 
- 

11 
350 

51 - 58 
- 

11 - 2 
50 -10 

40 
35 
- 

500 

40 
35 
- 

15 

 

Table 2: Progressive Development of Specifications on Sulphur Levels in Gasoline and Gas Oil Fuel in the European 
Union 

 1994 1996 2000 2005 2009 

gasoline (ppm) 1000 500 150 50 10 

Diesel fuel (ppm) 2000 500 350 50 10 
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2. HYDROTREATING PROCESS MODELLING 

It would be very interesting to develop a more 
general model that could predict the product 
characteristics for all hydrotreated gas oil fuels. Such 
an approach is impractical using the fundamental laws 
that govern process engineering. To achieve this 
objective, a black box type model based only on 
experimental data is therefore proposed. This 
technique is increasingly used in process engineering 
[25, 26]. It is used in modelling fluid catalytic cracking 
FCC process for obtaining gasoline [27], process water 
treatment [28] and modelling apparatus such as heat 
exchangers [29]. The most suited technique for 
developing this type of modelling is the Black Box 
modelling by Artificial Neural Networks (ANNs). 

An ANNs is a computational model whose design is 
basically inspired from the operation of real neurons 
[30]. Neural network modelling has found extensive 
applications in the field of process engineering in 
recent years greatly encouraged by results achieved 
through this approach [31]. This technique is very 
powerful in that only a small identification effort is 
enough to construct non-linear multivariable models 
that can yield excellent agreement between 
experimental and predicted values.  

There are two families of neural networks: 
feedforward neural networks and feedback neural 
networks. An feedforward neural network is presented 
graphically by a set of interconnected neurons. The 
information flowing from inputs to outputs without 
backtracking; if the neural network is represented by a 
graph whose nodes are neurons and the edges are the 
connections between nodes, the graph of a network is 
not completed acyclic; moving through the network, 
from any one neuron and following the connections, we 
can not return to the starting neuron [30,31]. The great 
majority of applications of neural networks use 
networks with layers as depicted in the example in 
Figure 1.  

This feedforward neural network with ni inputs, nh 
hidden neurons and no output neurons, implement 
nonlinear functions of its n input variables (are often 
designated by weight x1, x2, … xn) through composition 
of nal algebraic functions performed by its hidden 
neurons [30]. 

It should be emphasized that time plays no 
functional role in an open loop neural network if the 
inputs as well as the outputs are constant. The time 

required for the computation of the function performed 
by each neuron is negligible and, functionally, this 
computation can be considered as instantaneous. For 
this reason feedforward networks are often called 
"static networks", as opposed to feedback neural net-
works which are called "dynamic networks" [30,31]. 

 
Figure 1: Representation of an feedforward neural network. 

For feedback neural networks, the graph 
architecture is different from that of feedforward neural 
networks, where the graph is cyclic: as one moves in 
the network by following the direction of connections, it 
is possible to find at least one path that returns to its 
starting point (such a path is referred to as a cycle). 
The exit of a neuron on the network can be a function 
of itself, it is clearly conceivable that if the concept of 
time is explicitly considered [30,31]. In these 
conditions, any graph cycle of the feedback neural 
networks must include at least one connection of non-
zero delay. 

Figure 2 shows an example of a feedback neural 
network. The numbers displayed in the squares 
represent the delay linked with each connection, 
expressed as a multiple of the unit of time (or sampling 
period) T. This network includes a cycle which begins 
from the neuron 3, goes to the neuron 4, and back to 
neuron 3, the connection of 4 to 3 is linked to a delay of 
one time unit (q-1) [30,31]  

All feedback neural networks whatever its 
complexity, can be put into canonical form comprising a 
feedforward neural network, in which some outputs 
(state variables) are returned to the inputs by 
loopbacks of a unit delay [32]. This canonical form is 
consequently made up of an acyclical connection graph 
of one unit delay connecting certain outputs of this 
graph to the inputs of the network. For example, the 
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feedback neural network shown in Figure 2 can be put 
into the canonical form shown in Figure 3 [30]. This 
network has a single state variable x, it is therefore, a 
first order. The gray part of the canonical form is a 
feedforward neural network. 

 
Figure 2: Representation of a feedback neural network. 
 

 
Figure 3: Form canonical on the feedback neural network. 

Thus, any neural network can be put into a 
canonical form consisting of a static neural network, 
consequently, the general properties of either feedback 
or feedforward neural networks, therefore depend on 
the properties of feedback neural networks. 

Feedforward neural networks with layers whose 
hidden neurons have a function of sigmoid activation 
are often called Multilayer Perceptron (MLP) [30]. 
Example applications of MLP in process engineering 
are the modelling of the fluid catalytic cracking process 
and crude oil distillation process [33]. MLP can also 
estimate the characteristics of products obtained by 
different methods such as biodiesel fuels density [34] 
and cetane index [35].  

Note that artificial neural networks of the MLP type 
were utilized to model the two-stage process of 
hydrotreating of diesel fuel on a pilot scale. The 
developed model links the sulphur content of 
hydrotreated diesel with the following operating 
variables: temperature (t), pressure (p), hourly space 
velocity (HSV) and the sulphur content of the load & 
number of hydrotreating stages.  

3. DATA AND RESULTS OF EXPERIMENTS 

Five light gas oil fuels have been provided by a 
refineries in Algeria with varying sulphur content were 
obtained by atmospheric distillation and have been 
tested under variable operating conditions of 
temperature, pressure & HSV. The hydrogen/load ratio 
was maintained at 500ml. ml-1 for all experiments. 
Experiments were performed both on one (1) single 
stage as well as two (2) stages. The characteristics of 
these gas oil fuels are shown in Table 3. The amount of 
catalyst used for diesel hydrotreating is 50 c 

The catalyst is placed in the pilot reactor between 
two layers of 25g of silica (silica allows a better 
distribution of liquid and gas phases on the catalyst 
bed). The catalyst utilized was the CoMo/alumina type 

Table 3: Loads Characteristics  

Gasoil fuel A B C D E 

Density 0.864 0.846 0.,838 0.835 0.827 

Sulphur content (ppm) 12000 10000 7500 1870 990 

Distillation ASTM (°C) 
10% vol 
50% vol 
90% vol 

FP 

 
259 
292 
341 
357 

 
255 
289 
337 
354 

 
251 
286 
333 
351 

 
245 
282 
330 
349 

 
241 
279 
328 
346 
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whose characteristics are shown in Table 4. The sul-
phur content of loads and products were determined by 
X fluorescence.  

Table 4: Catalysts Properties of a Sulphurized 
Commercial Catalyst of the Type CoMo 
/Alumina 

Chemical composition (wt %)  

Co 4.2 

Mo 16.7 

S 4.6 

Co/Mo atomic ratio 0.4 

Characteristics:  

Density (g cm-3)  0.87 

Specific surface area (m2 g-1)   130.00 

Porosity (cm3 g-1)  0.19 

Pores average diameter (nm)   4.5 

A total of twenty five (25) experiments were 
conducted to study the variation of sulphur content of 

hydrotreated diesel fuel as a function of process 
operating conditions, sulphur content of the load and 
number of hydrotreating stages. Table 5 depicts the 
results obtained for each individual experiment. 

Figures 4, 5 and 6 indicate that increasing the 
temperature or pressure will result in a reduction in the 

Table 5: Characteristics and Results of Experiments of Different Hydrotreating Gasoil from Atmospheric Distillation  

n°exp T (°C) p (psi) HSV (h-1) 
Sulphur content 

 in load (ppm) 
N° of stages 

Sulphur content 

 in product (ppm) 

1 348 800 2.6 10000 1 1200 

2 357 800 2.6 10000 1 990 

3 362 800 2.6 10000 1 850 

4 368 800 2.6 10000 1 700 

5 374 800 2.6 10000 1 550 

6 386 800 2.6 10000 1 300 

7 397 800 2.6 10000 1 110 

8 403 800 2.6 10000 1 80 

9 360 800 2.8 10000 1 910 

10 360 1200 2.8 10000 1 780 

11 360 1600 2.8 10000 1 720 

12 360 2000 2.8 10000 1 700 

13 360 800 0.4 12000 1 350 

14 360 800 0.47 12000 1 390 

15 360 800 0.67 12000 1 470 

16 360 800 1.14 12000 1 640 

17 360 800 2.37 12000 1 890 

18 360 800 2.6 12000 1 920 

19 360 800 6.0 7500 1 1870 

20 360 800 3.0 7500 1 1250 

21 360 800 6.0 1870 2 1140 

22 360 800 1.5 1870 2 350 

23 360 800 2.1 990 2 170 

24 360 800 1.0 990 2 50 

25 360 800 0.4 990 2 10 

 
Figure 4: Effect of hydrotreating temperature on the product 
sulphur content (P=800 psi, HSV=2.6 h-1).  
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sulphur content of hydrotreated diesel fuel; whereas an 
increase in space velocity will result in an increase in 
sulphur content.  

 
Figure 5: Effect of the hydrotreating pressure on the product 
sulphur content (T=360°C HSV=2.8 h-1). 

 

 
Figure 6: Effect of the hydrotreating space velocity on 
product sulphur content (T=360°C, P=800 psi). 

According to the graphical in Figure 4 
representation of experiments N° 1 to 8 the sulphur 
content of products decreases with increasing 
temperature. Experiments N° 9-12 shown in Figure 5 
indicate that the increase in pressure reduces the 
sulphur content of products in particular when it varies 
between 800 and 1200 psi; between 1200 and 2000 
psi, the decrease in sulphur content is less important. 
Figure 6 representing the experiments N° 13 to 18, N° 
19 and 20, N° 21 and 22, N° 23 to 25 indicates that the 
increase of the hourly space velocity increases the 
sulphur content of gas oil hydrotreating. The 
hydrotreated diesel of experiment N°2 is used as feed 
for the tests N° 23, 24 and 25, while the diesel obtained 
from the experiment N°19 is used as feed for the tests 
N° 21 and 22. A second stage of hydrotreating allows 

obtaining results much more satisfactory, for example 
the single stage experiment N°2 provids a diesel with a 
sulphur content of 990 ppm, by substituting a second 
stage (experiment N° 25) the sulphur content 
decreases until 10 ppm. 

4. METHODOLOGY AND APPLICATIONS 

The Multi Layer Perceptron MLP neural networks 
are best suited for modelling processes such as 
hydrotreating of diesel. The practical advantage of 
these networks compared to classical techniques of 
nonlinear modelling lies in their ability to produce 
models with comparable accuracy with less 
experimental data (or in their capacity to build more 
accurate models from the same amount of data). This 
is the property of universal approximation [30]. 

It goes without saying that the universal 
approximation property is not specific to neural 
networks: polynomials, Fourier series, spline functions 
possess the same particularity. Therefore, what 
distinguishes neural networks from other common 
universal approximators is their parsimony [36] 

To obtain an approximation of a given accuracy, the 
neural networks use fewer parameters than the usual 
approximators. 

In practice, neural networks are advantageous 
compared to conventional approximators, when 
attempting to solve a problem for more than one or two 
variables [31]. This advantage is particularly interesting 
in terms of computation time, especially in terms of the 
amount of information necessary for the calculation of 
coefficients 

The implementation of this model has been carried 
out using the MATLAB software (version 7.3) [37] 
which provides a special interface for artificial neural 
networks, no programming was necessary. The 
process variables: temperature, pressure, space 
velocity, load sulphur content, and the number of 
hydrotreating stages are the inputs to the network and 
the sulphur content of the hydrotreated gas oil is its 
output. 

The Multi Layer Perceptron (MLP) will thus 
comprise three layers as shown in Figure 7. 

• The first layer consists of five input variables: 
temperature, pressure, sulphur content of the 
load, number of stages. 
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• The second layer will contain a given number of 
hidden neurons: x hidden neurons. 

• The third layer consists of a single output 
neuron. 

 
Figure 7: Network architecture used. 

To ensure the universal approximation property of 
the network, the activation function of hidden neurons 
was chosen to be a sigmoid function. The function 
mostly used in practice is the logistic function [37] given 
by: 

f v( ) =
1

1+ exp !v( )
          (1) 

Where: (ν) is the potential given by:  

v = w0 + wixi

i=1

n!1

"                                                (2) 

Where: 

xi: Inputs / Starters or network variables. wi: 
Parameters or weight of the network. wo: Bias. 

 

Figure 8: a = logsig (b). 

This function allows limiting the amplitude of the 
outputs between 0 and 1 as shown in Figure 8 a; it is 
called under MATLAB environment MATLAB logsig.  

According to the Universal Approximation Theorem, 
the activation function of the output neuron must be 
linear: f(v) = v and it is known under MATLAB as 
Purelin (b) as shown in Figure 9 a. 

 
Figure 9: a = Purelin (b). 

In practice, the model input and output data are 
normalised over the interval [0.1, 0.9], which will allow 
a better network convergence. The function used for 
normalizing the different variables is given by the 
following equation [37] 

y = ymax ! ymin( )* x ! xmin( ) / xmax ! xmin( ) + ymin    (3) 

Where: 

x: is an element of the (input or output) vector to 
normalize.  

xmax: is the value of the largest vector element to 
normalize. 

xmin: is the value of the smallest vector element to 
normalize. y: is the normalized value of x.  

ymax: is the maximum value of the interval of 
normalization, i.e 0.9. 

ymin: is the minimum value of the interval of 
normalization i.e 0.1. 

The MATLAB function that performs this operation 
is called "mapminmax". Normalized data are compiled 
in Table 6. Learning in the present case is a supervised 
non-adaptive supervised learning. It consists of 
determining from cases submitted to the network all the 
parameters (w) which minimizes the cost function of 
the least squares J(w) [37] given by: 

J w( ) =
1

2
yp x

k( ) ! g x
k
,w( )"

#$
%
&'

k=1

N

(
2

                              (4) 
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Where: g(x,w): Approximation of the regression 
function. 

Learning of the Multilayer Perceptron (MLP) is 
accomplished using the Gradient Backpropagation 
Algorithm with Momentum. Modifying the network 
weights was based upon second order Levenberg-
Marquardt optimization technique. The Early Stopping 
(ES) technique was utilized to avoid the effect of model 
overfitting [37]. 

MODEL STRUCTURE  

The approach consists of varying the number of 
neurons of the hidden layer. Several networks with 
different structures will be tested and the network 
yielding the smallest error will be chosen. 

The initialization of weights and biases is carried out 
randomly between -1 and +1. For a given number of 

hidden neurons, several parameter initialization 
attempts were undertaken in order to maximise 
chances to arrive at the optimal model.  

The determination of the optimal structure of the 
model is achieved iteratively.  

Stages for the choice of the model structure is 
depicted in Figure 8. Data is randomly divided into 
three groups:  

• A learning set consisting of 10 test examples, 
used to compute the gradient and update the 
values of network parameters.  

• A validation set consisting of 2 test examples, 
the error is being tracked throughout the learning 
process. As the validation error increases for a 
specified number of iterations (i.e.6), learning is 
stopped, that is to say, before complete 

Table 6: Normalized Data of the Process (Learning, Validation, Test) 

N°exp T (°C) P (psi) HSV (h-1) 
Sulphur content 

 in load (ppm) 
N° of stages 

Sulphur content 

 in product (ppm) 

1 0.1000 0.1000 0.4143 0.7547 0.1000 0.6376 

2 0.2309 0.1000 0.4143 0.7547 0.1000 0.5215 

3 0.3036 0.1000 0.4143 0.7547 0.1000 0.4613 

4 0.3909 0.1000 0.4143 0.7547 0.1000 0.3968 

5 0.4782 0.1000 0.4143 0.7547 0.1000 0.3323 

6 0.6727 0.1000 0.4143 0.7547 0.1000 0.2247 

7 0.8127 0.1000 0.4143 0.7547 0.1000 0.1430 

8 0.9000 0.1000 0.4143 0.7547 0.1000 0.1301 

9 0.2745 0.1000 0.4429 0.7547 0.1000 0.4871 

10 0.2745 0.3667 0.4429 0.7547 0.1000 0.4312 

11 0.2745 0.6333 0.4429 0.7547 0.1000 0.4054 

12 0.2745 0.9000 0.4429 0.7547 0.1000 0.3968 

13 0.2745 0.1000 0.1000 0.9000 0.1000 0.2462 

14 0.2745 0.1000 0.1000 0.9000 0.1000 0.2634 

15 0.2745 0.1000 0.1386 0.9000 0.1000 0.2978 

16 0.2745 0.1000 0.2057 0.9000 0.1000 0.3710 

17 0.2745 0.1000 0.3814 0.9000 0.1000 0.4785 

18 0.2745 0.1000 0.4143 0.9000 0.1000 0.4914 

19 0.2745 0.1000 0.9000 0.5730 0.1000 0.9000 

20 0.2745 0.1000 0.4714 0.5730 0.1000 0.6333 

21 0.2745 0.1000 0.9000 0.1639 0.9000 0.5860 

22 0.2745 0.1000 0.2571 0.1639 0.9000 0.2462 

23 0.2745 0.1000 0.3429 0.1000 0.9000 0.1688 

24 0.2745 0.1000 0.1857 0.1000 0.9000 0.1172 

25 0.2745 0.1000 0.1000 0.1000 0.9000 0.1000 
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convergence of the algorithm, and the overfitting 
is kept within limits. The weights and biases 
were those that correspond to the minimum of 
the validation error.  

• A test set containing 3 examples, not used 
during learning, it helps to determine the optimal 
number of hidden neurons that allows the best 
approximation of hydrotreated gas oil sulphur 
content while ensuring adequate generalization. 

 
Figure 10: Applied algorithm of modeling. 

RESULTS AND DISCUSSION  

The number of neurons in the hidden layer have 
been varied between 1 and 10. The criterion for 
choosing between these different structures is the 
mean quadratic error of the test (TMQE). The network 
with seven (7) hidden neurons has the smallest TMQE 
(2.9462e-004) with very good mean quadratic errors on 
the training sets (1.6952e-005) and validation set 
(8.7257e-005). This model is the optimal model for 
determining the best approximation of the sulphur 
content of gas oil hydrotreating. The Mean Quadratic 
Errors across the model: Learning LMQE, test TMQE 
and validation VMQE are computed using the following 

equations LMQE =
1

NL
y
k
p ! g x

k
,w( )"

#$
%
&'

k=1

N
A

(

2

                    

(5) 

TMQE =
1

NT
y
k
p ! g x

k
,w( )"

#$
%
&'

k=1

N
T

(

2

                             (6) 

VMQE =
1

NV
y
k
p ! g x

k
,w( )"

#$
%
&'

k=1

N
V

(

2

        (7) 

Where:  

NL, NT, NV: are respectively the numbers of 
examples of the learning set, validation and testing. 
g(x,y): Approximation of the regression function 
Variations of LMQE, TMQE and VMQE parameters 
during the learning process of the optimal network are 
shown in Figure 11.  

 
Figure 11: Variations of LMQE, TMQE and VMQE during the 
learning process of seven the hidden neurons network. 
 

 
Figure 12: Simulated sulphur content (S*) versus measured 
sulfur content (S) of hydrotreated gas oils. 

In order to make a comparison between the 
measured values (S) and the predicted ones (S*) of 
hydrotreated diesel sulphur content, normalization of 
the output values of the network was accomplished 
with the MATLAB function "mapminmax", 'reverse'. The 
points on Figure 12 represent predicted (S*) versus 
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measured values of sulphur content (S). It should be 
noted that these points are distributed around the axis 
“y = x”, indicating a good agreement between predicted 
and measured values. The mean relative error 
regarding learning was 2.31 percent, validation set 
error was 3.62 percent and the entire test error was 
6.74 percent. In summary, the network has achieved 
good learning as well as satisfactory generalization of 
the model.  

CONCLUSION  

Gas oil hydrotreating process has been modelled 
using artificial neurons of the Multi Layer Perceptron 
(MLP) network type. The determination of the number 
of neurons in the hidden layer and the choice of initial 
parameters of the network are made by trial and error. 
The results obtained are very good, the test error being 
less than 4%. The technique of artificial neural 
networks is very well suited for modelling this type of 
process.  

Furthermore, it would be very interesting to enhance 
this type of model by including additional input 
variables, for example the load characteristics such as 
aromatics content, olefins content, and cetane index, or 
the process characteristics such as the catalyst type 
and the quantity of hydrogen. The developed model of 
gas oil hydrotreating process in two stages has 
provided very good results; this proves the ability of 
neural networks to solve this type problem. 

The use of such a model on an industrial scale 
could make enormous services; it would focus the 
attention of operators when there are failures in the 
working of the process, for example during the aging of 
catalyst. It is important to note that the implementation 
of such models in a refinery is much simpler than the 
pilot scale because of the availability of large quantities 
of data. In fact, the monitoring of the process is carried 
out in a rigorous manner and this several times a day. 
The application of such an approach for other refining 
processes and petrochemicals would be very 
beneficial.  

NOMENCLATURE 

CO = carbon monoxide 

g(x,w) = Approximation of the regression function 

J(w) = Cost function of the least squares  

HSV = hourly space velocity 

N° = number of stages  

NL = number of examples of the learning 

NT = number of examples of the testing 

NV = number of examples of the validation 

ni = inputs 

nh = hidden neurons  

no = output neurons  

nno = nonlinear functions 

nm = nanometre 

P(psi) = pressure (pound square inch) 

PPM = parts per million 

S = sulphur 

(S) = sulphur measured  

(S*) = sulphur predicted  

SO2 = sulphur dioxide 

SO3 = sulphur trioxide  

T (°C) = temperature (Celsius degree) 

V = volume 

x = input or output vector. x1, x2, … xn weight 
input vector  

xi = inputs / starters or network variables 

xmax = the largest vector element  

xmin = the smallest vector element 

y = normalized value of x 

ymax = maximum value of the interval 0.9 

ymin = minimum value of the interval 0.1 

wi = weight of the network 

wo = Bias 

Abbreviations 

ANNs = Artificial Neural Networks  

MLP = Multi Layer Perceptron 
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NL = Network learning 

ES = Early Stopping 

FCC = Fluid Catalytic Cracking 

HC = Hydrocarbons 

HDS = Hydrodesulphurization 

HDT = Hydrotreatment 

LCO = Light Cycle Oil 

LMQE = Learning Mean Quadratic Error 

PAHs = Polycyclic Aromatic Hydrocarbons 

SR = Straight Run 

TMQE = Test Mean Quadratic Error 

VMQE = Validation Mean Quadratic Error  

VB = Visbreaking 
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