Design and Analysis of a Flat Plat Solar Powered Ejector Refrigeration System

Authors

  • Hani Sait King Abdulaziz University, Rabigh, Saudi Arabia
  • Badr Habeebullah King Abdulaziz University, Jeddah, Saudi Arabia
  • Nadim Turkman King Abdulaziz University, Jeddah, Saudi Arabia
  • Yasin Al Khatib King Abdulaziz University, Jeddah, Saudi Arabia
  • Ahmad Hussain King Abdulaziz University, Jeddah, Saudi Arabia

DOI:

https://doi.org/10.15377/2409-5818.2020.07.3

Keywords:

Ejector, Solar, Flat plate, Evacuated tube.

Abstract

 The Ejector refrigeration system can operate using renewable energy such as solar or wasted heat. A mathematical model for an ejector refrigeration system powered by solar energy was developed. The Ejector refrigeration system depends on many factors, such as ejector geometry, NXP, and operating conditions. A flat plate solar collector is designed to predict the heat transfer performance for the whole system, and the primary factors affecting the heat transfer performance. Outlet temperature of 134.95 °C was achieved from the setup of five solar collectors (two square meters each) when the solar irradiance was 985.69 W/m2. The water needs total power of 5016 W to reach this temperature.

References

Sun, D.-W., Comparative study of the performance of an ejector refrigeration cycle operating with various refrigerants. Energy Conversion and Management, 1999. 40(8): p. 873-884.

Varga, S., A.C. Oliveira, and B. Diaconu, Influence of geometrical factors on steam ejector performance – A numerical assessment. International Journal of Refrigeration, 2009. 32(7): p. 1694-1701. http://doi.org/10.1016/j.ijrefrig.2009.05.009

Wang, L., et al., Numerical study on optimization of ejector primary nozzle geometries. International Journal of Refrigeration, 2017. 76: p. 219-229. http://dx.doi.org/doi: 10.1016/j.ijrefrig.2017.02.010

WB, G., Principle of refrigeration. 1982: Cambridge University Press. https://www.worldcat.org/title/principles-ofrefrigeration/oclc/453028295

Yapıcı, R., Experimental investigation of performance of vapor ejector refrigeration system using refrigerant R123. Energy Conversion and Management, 2008. 49(5): p. 953- 961. http://doi.org/10.1016/j.enconman.2007.10.006

Yapıcı, R. and H.K. Ersoy, Performance characteristics of the ejector refrigeration system based on the constant area ejector flow model. Energy Conversion and Management, 2005. 46(18): p. 3117-3135. http://doi.org/10.1016/j.enconman.2005.01.010

Yapıcı, R., et al., Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio. International Journal of Refrigeration, 2008. 31(7): p. 1183-1189. http://doi.org/10.1016/j.ijrefrig.2008.02.010

Yen, R.H., et al., Performance optimization for a variable throat ejector in a solar refrigeration system. International Journal of Refrigeration, 2013. 36(5): p. 1512-1520. http://doi.org/10.1016/j.ijrefrig.2013.04.005

Arbel, A., et al., Ejector Irreversibility Characteristics. Journal of Fluids Engineering, 2003. 125(1): p. 121-129. http://doi.org/10.3390/en9030212

B.ELHUB, MOHAMED AZLY ABDUL AZIZ, and MOHD KHAIRUL ANUAR BIN SHRIF SOHIF MAT, Review of ejector design parameters and geometry for refrigeration and air conditioning application. Computer Applications in Environmental Sciences and Renewable Energy, 2014.

Besagni, G., R. Mereu, and F. Inzoli, Ejector refrigeration: A comprehensive review. Renewable and Sustainable Energy Reviews, 2016. 53: p. 373-407. https://doi.org/10.1016/j.rser.2015.08.059

Chaiwongsa, P. and S. Wongwises, Experimental study on R-134a refrigeration system using a two-phase ejector as an expansion device. Applied Thermal Engineering, 2008. 28(5): p. 467-477. https://doi.org/10.1016/j.applthermaleng.2007.05.005

Chandra, V.V. and M.R. Ahmed, Experimental and computational studies on a steam jet refrigeration system with constant area and variable area ejectors. Energy Conversion and Management, 2014. 79: p. 377-386. https://doi.org/10.1016/j.enconman.2013.12.035

Chen, J., H. Havtun, and B. Palm, Investigation of ejectors in refrigeration system: Optimum performance evaluation and ejector area ratios perspectives. Applied Thermal Engineering, 2014. 64(1): p. 182-191. https://doi.org/10.1016/j.applthermaleng.2013.12.034

Chen, W., et al., Theoretical analysis of ejector refrigeration system performance under overall modes. Applied Energy, 2017. 185: p. 2074-2084. https://doi.org/10.1016/j.apenergy.2016.01.103

Chunnanond, K. and S. Aphornratana, Ejectors: applications in refrigeration technology. Renewable and Sustainable Energy Reviews, 2004. 8(2): p. 129-155. https://doi.org/10.1016/j.rser.2003.10.001

Chunnanond, K. and S. Aphornratana, An experimental investigation of a steam ejector refrigerator: the analysis of the pressure profile along the ejector. Applied Thermal Engineering, 2004. 24(2): p. 311-322. https://doi.org/10.1016/j.applthermaleng.2003.07.003

Dennis, M. and K. Garzoli, Use of variable geometry ejector with cold store to achieve high solar fraction for solar cooling. International Journal of Refrigeration, 2011. 34(7): p. 1626- 1632. https://doi.org/10.1016/j.ijrefrig.2010.08.006

Dong, J., et al., An experimental investigation of steam ejector refrigeration system powered by extra low temperature heat source. International Communications in Heat and Mass Transfer, 2017. 81(Supplement C): p. 250- 256. https://doi.org/10.1016/j.icheatmasstransfer.2016.12.022

Dong, J., et al., An Experimental Investigation of Steam Ejector Refrigeration Systems. Journal of Thermal Science and Engineering Applications, 2012. 4(3): p. 031004- 031004-7. https://doi.org/10.1115/1.4006714

Eames, I.W., S. Aphornratana, and H. Haider, A theoretical and experimental study of a small-scale steam jet refrigerator. International Journal of Refrigeration, 1995. 18(6): p. 378-386. https://doi.org/10.1016/0140-7007(95)98160-m

Eames, I.W., et al., The design, manufacture and testing of a jet-pump chiller for air conditioning and industrial application. Applied Thermal Engineering, 2013. 58(1): p. 234-240. https://doi.org/10.1016/j.applthermaleng.2013.04.028

Elbel, S. and N. Lawrence, Review of recent developments in advanced ejector technology. International Journal of Refrigeration, 2016. 62: p. 1-18. https://doi.org/10.1016/j.ijrefrig.2015.10.031

Galanis, N. and M. Sorin, Ejector design and performance prediction. International Journal of Thermal Sciences, 2016. 104: p. 315-329. https://doi.org/10.1016/j.ijthermalsci.2015.12.022

Grazzini, G., A. Milazzo, and D. Paganini, Design of an ejector cycle refrigeration system. Energy Conversion and Management, 2012. 54(1): p. 38-46. https://doi.org/10.1016/j.enconman.2011.09.015

Hernandez, J.I., et al., The Behavior of an Ejector Cooling System Operating with Refrigerant Blends 410A and 507. Energy Procedia, 2014. 57: p. 3021-3030. https://doi.org/10.1016/j.egypro.2014.10.338

Holtzapple, M.T., High-Efficiency Jet Ejector. Invention Disclosure, Texas A&M University, 2001.

Huang, B.J., et al., A 1-D analysis of ejector performance. International Journal of Refrigeration, 1999. 22(5): p. 354- 364. https://dx.doi.org/10.1016/S0140-7007(99)00004-3

J.H. Keenan, E.P.N., F. Lustwerk, An Investigation of Ejector Design by Analysis and Experiment. Journal of Applied Mechanics, Trans.,ASME 1950. 72(299-309). http://dx.doi.org/10.1016/j.ijrefrig.2011.06.001

Jia, Y. and C. Wenjian, Area ratio effects to the performance of air-cooled ejector refrigeration cycle with R134a refrigerant. Energy Conversion and Management, 2012. 53(1): p. 240-246. http://dx.doi.org/10.1016/j.enconman.2011.09.002

Kong, F.S., et al., Application of Chevron Nozzle to a Supersonic Ejector–diffuser System. Procedia Engineering, 2013. 56(Supplement C): p. 193-200. http://dx.doi.org/10.1016/j.proeng.2013.03.107

Li, F., et al., Experimental investigation on a R134a ejector refrigeration system under overall modes. Applied Thermal Engineering, 2018. 137: p. 784-791.

Milazzo, A., A. Rocchetti, and I.W. Eames, Theoretical and Experimental Activity on Ejector Refrigeration. Energy Procedia, 2014. 45: p. 1245-1254. http://dx.doi.org/10.1016/j.egypro.2014.01.130

Sait, H.H., et al., Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors. Applied Energy, 2015. 141(Supplement C): p. 175-189. http://dx.doi.org/10.1016/j.apenergy.2014.11.074

Ma, X., et al., Experimental investigation of a novel steam ejector refrigerator suitable for solar energy applications. Applied Thermal Engineering, 2010. 30(11): p. 1320-1325. http://dx.doi.org/10.1016/j.applthermaleng.2010.02.011

Allouche, Y., C. Bouden, and S. Riffat, A Solar-Driven Ejector Refrigeration System for Mediterranean Climate: Experience Improvement and New Results Performed. Energy Procedia, 2012. 18: p. 1115-1124. http://dx.doi.org/10.1016/j.egypro.2012.05.126

Göktun, S., Optimization of irreversible solar assisted ejector-vapor compression cascaded systems. Energy Conversion and Management, 2000. 41(6): p. 625-631.

Gil, B. and J. Kasperski, Performance Analysis of a Solarpowered Ejector Air-conditioning Cycle with Heavier Hydrocarbons as Refrigerants. Energy Procedia, 2014. 57: p. 2619-2628. https://doi.org/10.1016/j.egypro.2014.10.273

Bellos, Evangelos & Tzivanidis, Christos. (2017). Optimum design of a solar ejector refrigeration system for various operating scenarios. Energy Conversion and Management. 154. 10.1016/j.enconman.2017.10.057. https://doi.org/10.1016/j.egypro.2012.05.126

Diaconu, B.M., Energy analysis of a solar-assisted ejector cycle air conditioning system with low temperature thermal energy storage. Renewable Energy, 2012. 37(1): p. 266- 276. https://doi.org/10.1016/j.renene.2011.06.031

Śmierciew, K., et al., Experimental investigations of solar driven ejector air-conditioning system. Energy and Buildings, 2014. 80: p. 260-267. https://doi.org/10.1016/j.enbuild.2014.05.033

Downloads

Published

2020-12-23

How to Cite

1.
Hani Sait, Badr Habeebullah, Nadim Turkman, Yasin Al Khatib, Ahmad Hussain. Design and Analysis of a Flat Plat Solar Powered Ejector Refrigeration System. Glob. J. Energ. Technol. Res. Updat. [Internet]. 2020Dec.23 [cited 2021Oct.16];7(1):21-30. Available from: https://www.avantipublishers.com/jms/index.php/gjetru/article/view/767

Issue

Section

Articles