
26 Global Journal of Energy Technology Research Updates, 2019, 6, 26-40  

 
 E-ISSN: 2409-5818/19  © 2019 Avanti Publishers 

A Review of Fault Detection and Diagnosis Methodologies for Air-
Handling Units 

F. Guarino1, V. Filomena2, L. Maffei1, S. Sibilio1 and A. Rosato1,* 

1University of Campania Luigi Vanvitelli, Department of Architecture and Industrial Design, 81031, Aversa, 
Italy 
2C.I.R.A. (Italian Aerospace Research Centre), Test Plants and Infrastructure, 81043 Capua, Italy 

Abstract: HVAC (Heating, Ventilation and Air-Conditioning) systems for space heating, space cooling and ventilation of 
buildings consume nearly 40% of the world energy demand and present the least expensive opportunities for reducing 
the greenhouse gases emission. 

Fault Detection and Diagnosis (FDD) methods could monitor the operation of various processes and/or components 
allowing to detect and, if possible, even predict the presence of defects (deviations from normal or expected operation) 
as well as ideally identify (diagnose) the fault and/or its location, giving instructions for undertaking corrective actions. 

FDD techniques could be successfully used for managing the predictive maintenance and/or optimizing the 
energy/economic/environmental performance of HVAC units while assuring the comfort of occupants. 

This paper examines the current state of the art of the research on the development and implementation of FDD systems 
when applied to Air-Handling Units (AHUs), the main and most important device of HVAC systems. This paper describes 
the existing methodologies, approaches and tools for the utilization of FDD techniques, summarizes the most important 
findings available in current literature in reference to several case studies where FDD systems have been applied with 
reference to AHUs and indicates the main gaps to be further investigated. 
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1. INTRODUCTION 

According to the United Nations [1] and World 
Resources Institute [2], HVAC (Heating, Ventilation and 
Air-Conditioning) systems for space heating, space 
cooling and ventilation of buildings are one of the major 
contributors to the world’s energy use (consuming 
nearly 40% of the total energy demand) and present 
the least expensive opportunities for reducing the 
Greenhouse Gases (GHG) emission.  

Even when building automation systems or 
advanced controllers are applied to enhance the 
performance of HVAC systems, faults can develop 
during the installation or routine operation, resulting in 
excessive energy waste or inefficient usage of energy 
as well as uncomfortable environment, unless 
corrective action is taken. In addition, it should be 
highlighted that the premature component failure of 
HVAC plants increases the direct costs through the 
embodied energy and material resources in replacing 
the equipment as well as the indirect costs associated 
with the repair process [3, 4]. In a survey of United 
Kingdom buildings, the data showed 25-50% of energy  
 

 

*Address correspondence to this author at the University of Campania Luigi 
Vanvitelli, Department of Architecture and Industrial Design, 81031, Aversa, 
Italy; Tel: +39 0815010845; Fax: +39 0815010845;  
E-mail: antonio.rosato@unicampania.it 

waste due to faults in HVAC units; this range could be 
reduced below 15% in the case of the faults could be 
detected and identified early in the premature stage 
before unacceptable damage occur [5].  

When operating a complex HVAC system, it is 
beneficial to provide the operator with tools which can 
help in decision making for the system management 
and optimization as well as recovery from a failure 
state; the tools should be able to detect the defects and 
give instructions on corrective actions to be taken in a 
simple and understandable way. However, 
understanding the relationship between causes and 
effects is more difficult than in the past due to both 
increased complexity of HVAC plants as well as current 
supervisory strategies used by energy management 
systems which do not explicitly optimize performance 
and cannot respond to the occurrence of faults that 
cause it to deteriorate.  

Companies follow different maintenance programs 
in order to guarantee the reliability of systems and 
reduce the costs; generally, a reactive or preventive 
maintenance is adopted. In the case of reactive 
maintenance, a system is used up to its limits and the 
repairs are performed only after the system failure; this 
kind of approach is not convenient with reference to 
complex systems mainly due to the fact that repairing 
the damaged parts after failure could (i) be extremely 
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expensive and (ii) cause safety issues. For this reason, 
it could be useful to prevent the failures by performing 
regular checks on the equipment by means of a 
preventive maintenance; in this case , the systems are 
inspected and maintained at fixed time intervals, 
independent of their actual condition; however, one of 
the main challenges of this approach is to determine 
when the maintenance has to be performed; it has to 
be conservative in order to prevent safety issues as 
well as reduce the costs of failures, but scheduling the 
maintenance very early could mean wasting system life 
that is still usable. The above-mentioned critical points 
associated to both reactive and preventive 
maintenance programs highlight how “predicting” the 
failures of components could be extremely important in 
minimizing the related costs, optimizing the 
performance as well as avoiding safety issues. 

Fault Detection and Diagnosis (FDD) methods can 
monitor the operation of various processes and 
components as well as detect and predict the presence 
of the defects (deviations from normal or expected 
operation) causing a faulty operation. Ideally, FDD 
systems could also resolve (diagnose) the type of 
problem and/or identify its location, giving instructions 
for undertaking corrective actions; in practice, this is 
seldom possible and FDD systems should be 
considered more as a tool for obtaining information on 
the process/component as well as an aid to help the 
operators in identifying the causes of the faulty process 
operation [6-8]. 

FDD methods are based on the use of controllers. 
From the process signals, some test quantities are 
generated, the variation of which in comparison to a 
“nominal/healthy” trend is assumed as a symptom of 
defects; once the test quantity reaches some 
predetermined levels that reflects the seriousness of 
the defect requiring corrective actions to take place, the 
test quantity is set into an alarm state (symptom) and 
reasoning is started to find the cause of the “alarm - 
symptom – fault” chain [9, 10]. 

FDD techniques have been used for decades in 
aerospace, nuclear and industrial applications, and 
their use in building operation and control applications 
is becoming more widespread. In the building sector, 
they have been commonly used for HVAC systems, but 
are in principle applicable to all the sub-systems of 
buildings [11].  

In order to apply FDD methods to HVAC units or 
components, it is necessary to compare real behaviour 

of the systems to the “nominal/healthy” operation 
without faults that can be modeled by means of 
simulation softwares and/or artificial intelligence 
techniques.Simulation softwares represent a useful 
approach not only in design phase, but also in 
combination with FFD methods thanks to the fact that 
they could have the required accuracy to predict 
thermal/cooling loads, energy consumption and quality 
of indoor environment of buildings, thus allowing for the 
detection of any non-optimal states of performance by 
comparing the simulation results with the normal data. 
However, accurate mathematical models of HVAC 
units or sub-systems are sometimes difficult to realize 
since (i) most HVAC designs are unique, (ii) financial 
considerations restrict the amount of time and effort 
that can be put into deriving the model, (iii) detailed 
design information are seldom available, and (iv) 
measured data from the actual operation of plants are 
often a poor indicator of overall behaviour since the 
buildings are subject to seasonal disturbances, with 
transient behaviour generally occurring. In these cases, 
other approaches are also available, such as using 
artificial intelligence techniques [12]. Artificial Neural 
Networks (ANNs), for example, gather knowledge by 
detecting the patterns and relationships in data and 
learn (or are trained) through experience, not from 
programming; once the network is trained and tested, it 
can be given new input information to predict the 
output. Therefore, ANNs represent a promising 
modeling technique, especially for data sets having 
non-linear relationships which are frequently 
encountered in a number of processes; in terms of 
model specification, ANNs require no knowledge of the 
data source but, since they often contain many weights 
that must be estimated, they require large training sets; 
in addition, ANNs can combine and incorporate both 
literature-based and experimental data to solve 
problems. 

Efficient FDD methods could detect faults before the 
building occupants notice the effects, which would 
reduce the strain on heating, ventilation and air-
conditioning service industry. Furthermore, they would 
reduce the repair and maintenance costs of the plants. 
In addition, these methods could provide the 
manufacturers and dealers with feedback about the 
design and sales of systems in order to identify where 
any improvements could be made, and which systems 
have a history of reliability. Moreover, improving the 
operation of HVAC systems could provide significant 
benefits to the environment by reducing the energy 
consumption and related GHG emissions [13-15]. 
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Finally, integrating FDD systems into modern HVAC 
plants naturally fits into the future retrofit projects to 
enhance theefficiency, comfort and reliability of 
buildings; lowering the energy consumption and 
building operation costs with a proper occupant comfort 
level could be reached together with well-organized 
maintenance, fast detection and correction of faults and 
best use of the equipment.  

One of the main disadvantages of FDD approach is 
that it could require a continuous monitoring with 
specifically devoted instrumentation and, therefore, the 
above-mentioned benefits alone could fail in justifying 
the cost of implementing FDD methods [15]. As a 
consequence, to achieve a widespread adaptation of 
FDD systems, the benefits of this approach throughout 
the value chain have to be assessed in greater detail. 
In addition, someone has to pay for higher costs of the 
FDD system, and multiple parties may share the costs 
if these benefits are realized; for example, electric-grid 
operators could provide an incentive in the form of a 
cash rebate for customers who adopt the FDD 
techniques; moreover, manufacturers could offer an 
FDD-enabled system to the dealer at a discounted 
price; the dealer, installer, and service company could 
also pay for access to the FDD data, in order to receive 
feedback on their services [15].  

The prediction of faulty operation is also problematic 
since some types of faults cannot be introduced in a 
realistic manner, and the deliberate insertion of faults 
may lead to an unacceptable increase in energy costs 
or occupant discomfort; an additional problem is that 
many variables cannot be measured accurately and 
some measurements are not available. Finally, it 
should be highlighted that there is a real risk of an 
incorrect diagnosis having to respond to a false alarm, 
for example due to the limited accuracy/high 
uncertainty of the instrumentation [16, 17].  

Therefore, additional studies have to be carried out 
in order to better highlight and assess the potential 
applications and benefits/drawbacks associated to FDD 
techniques. 

The very first efforts on creating and applying FDD 
methods were seen in the 1980s, thanks to the rise of 
microcomputers and direct digital control [18, 19]. A 
number of methodologies and procedures for 
optimizing fault detection and diagnosis methods were 
developed in the Annex 25 of the International Energy 
Agency (IEA)’s Energy Conservation in Buildings and 
Community System (ECBCS) [20]; many of these 

methods were later demonstrated in real buildings in 
the IEA ECBCS Annex 34 [21]. Furthermore, since 
2010 studies on FDD systems steadily increased. 

Several reviews are already available on the 
literature. However, the reviews of Katipamula and 
Brambley [14, 22] mainly concerned the overview of 
FDD methods in generic HVAC equipment; the 
discussion on AHUs was short and not instructive with 
reference to the selection and evaluation of suitable 
FDD techniques for AHUs. Yu et al. [5] presented a 
systematic study of various FDD methods focusing on 
AHUs by using a set of desirable characteristics to 
evaluate the existing methodologies for the 
development of an advanced online FDD 
implementation; however, the main results of related 
studies available in literature as well as the existing 
gaps in the research field were not indicated and 
discussed in detail. 

This paper firstly presents in brief the fundamental 
theories and classifications of FDD methods; then, a 
systematic and detailed analysis of various FDD 
methods applied to AHUs is carried out in order to (i) 
highlight the existing methodologies for FDD 
implementation, (ii) summarize the most important 
findings available in literature and (iii) indicate the main 
gaps in research.  

2. BASICS OF FDD SYSTEMS 

This section provides a concise introduction to the 
fundamentals of FDD techniques; for greater detail, it is 
worth referring to the works by Ding [23], Isermann 
[24], Himmelbleau [8], De Dkleer and Williams [25]. 

According to Himmelblau [8], a fault is “a departure 
from an acceptable range of an observed variable or a 
calculated parameter associated with a process” [26]. 
Faults can be further categorized by their time 
dependency into (i) abrupt faults (stepwise), (ii) 
incipient faults (drift-like), and (iii) intermittent faults 
[27]. As a general rule, abrupt faults are the easiest to 
detect, while incipient faults and intermittent faults are 
more difficult to identifiy due to their dependency on 
time. Rogers [15] distinguished between soft and hard 
faults; soft faults result in degraded performances 
without affecting occupant comfort, whereas hard faults 
result in uncomfortable occupant conditions. With 
respect to the development of FDD systems, the 
distinction between hard and soft faults is that hard 
faults may be detected by analyzing the indoor 
conditions, whereas some insights to the system 
operation is necessary for detecting soft faults. 
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A typical outline of FDD systems is shown in Figure 
1 [12]. The data sources for FDD applications include 
mainly sensors and control data from the building 
automation system and energy management system; 
these data are then typically sent to a feature 
generation procedure such as expert rules and/or 
process models. Then, the system can perform a 
complete fault diagnosis process [12]. 

Most of the modern FDD methods are based on 
several measured variables. If any significant 
discrepancies are detected between the experimental 
data and “nominal/healthy” operation, a fault is 
detected. This decision of whether a fault has truly 
occurred can be reached by using simple threshold 
values, discriminant function, or other more 
complicated decision models [12]. Besides identifying 
abnormal operations, symptoms generated from fault 
detection can be later used in the fault diagnostics [28, 
29]. 

Networking is yet another hurdle when preparing a 
working FDD infrastructure. A large commercial 
building may have thousands of controllers and pieces 
of equipment interfacing with each other at high 
frequency. Thus, providing a functioning and robust 
network infrastructure is one of the fundamental 
requirements for implementing an advanced FDD 
system [30-32]. 

3. CLASSIFICATIONS OF FDD METHODS 

In current literature, there are multiple classifications 
of FDD methods [12, 15, 22, 27, 33-35].  

One of the most recent and used classifications of 
FDD methods distinguishes (1) quantitative model-
based methods, (2) qualitative model-based methods, 
and (3) process history-based methods [12, 15, 22, 35]. 
This classification scheme is shown in Figure 2. 

Quantitative model-based methods are sets of 
quantitative mathematical relationships based on the 
underlying physics of the processes; they include those 
based on detailed physical models as well as those 
based on simplified models of the physical processes 
[22]. Qualitative model-based methods are models 
consisting of qualitative relationships derived from 
knowledge of the underlying physics; these approaches 
include rule-based systems and models based on 
qualitative physics. For rule-based systems, 
Katipamula and Brambley [22] further distinguished 
between (i) those based on expert rules (i.e., expert 
systems) for which there may, in some cases, be no 
underlying first principles from physics, (ii) rules derived 
from first principles, and (iii) simple limit checks (which 
serve as the basis for alarms). Quantitative model-
based as well as qualitative model-based methods are 
also known as white-box models [23]. These models 
are usually developed in the cases of precise 
representations of underlying physical process, they 
are able to simulate fault states and they are good in 
representing transient states [36]. However, they are 
often too complex to implement and compute, require a 
lot of data input which may not always be available, 
and are very hard to calibrate/recalibrate due to a high 
degree of freedom [22]. These models are usually used 
as forward models in which the parameters are 
predefined based on design information and 

 
Figure 1: Overview of FDD systems [12]. 
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recalibration is usually limited to a small parameter 
space. However, while implemented properly, features 
generated from white-box models could achieve higher 
accuracy [36] compared to alternative models; 
however, researchers noted that the expertise and time 
required to implement and maintain such models are 
significant [37, 38]. 

In contrast to the first two groups where a priori 
knowledge of the process is assumed, the third group 
(process history-based models) is based solely on 
process history, i.e. a large amount of historical data is 
assumed to be available. This category includes black-
box methods for which the models are derived purely 
from the data and gray-box models that use first 
principles or engineering knowledge to specify the 
mathematical form of terms in the model for which 
parameters are determined from process data.  

Some of the shortcomings of white-box models are 
addressed by gray- and black-box approaches. 

Black-box modelling requires no knowledge of 
internal processes and should only be developed in 
terms of its inputs and outputs. Gray-box modelling is 
unaware of the detailed specifics of a system, but a 
certain model can be created with some insights and 
experimental data.  

In particular, black-box methods include statistically 
derived models (e.g., regression), artificial neural 
networks (ANNs), and other pattern-recognition 
techniques; they use operation data to train internal 
parameters, but as their name suggests, in most cases 
black-box models can only act as observers since the 
estimated parameters have little relevance to the actual 
physical process, thus making it difficult to pinpoint the 
fault cause [39]. Black-box models are more effective 

with respect to HVAC systems and their components 
since those systems are usually equipped with enough 
sensors to be compared with the observer [40, 41]. The 
fast-growing statistical learning (machine learning) field 
has led to a growing trend of research works using 
black-box models in FDD applications [35].  

Gray-box models are analytical models loosely 
based on first principles, in which the model 
parameters can still be traced to the process physical 
response [14]. A lower number of parameters used in 
these models often makes them less prone to over-
fitting issues [39]. Compared to white-box models, they 
are faster to compute and easier to calibrate and 
construct; in comparison to black-box models, they are 
more robust and can be used for parameters 
estimation. On the other hand, formulating gray-box 
models requires expert knowledge and extensive 
measured data to train the model parameters [14], and 
may be less accurate than black-box and white-box 
model counterparts. Since most of the processes inside 
buildings or zones are structurally similar, common 
gray-box models can be formulated relatively easily. 
Some of the reasons why gray-box approach is often 
preferred over black-box is the lack of the physical 
interpretation of the results in the latter [42]. The gray-
box models also have better generalization capabilities 
when the test data deviates considerably from the 
training data [43]. 

Katimapula and Brambley [22] described the above-
mentioned categories of FDD methods in terms of 
strength, weakness and suitability, as summarized in 
Table 1. 

Afroz et al. [43] compared white-box, black-box and 
gray-box models with reference to prediction accuracy, 

 
Figure 2: Classification scheme for FDD methods [22]. 
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generalization capability, training data requirement and 
complexity level; the results of this comparison are 
summarized in Table 2 [43] where the methods are 
ranked by taking into account that prediction accuracy 
and generalization capability should be high leveled, 
while a low level is desirable for the other two 
performance criteria.  

4. LITERATURE REVIEW: DISCUSSION AND 
CONSIDERATIONS 

The whole structure and operation of HVAC plants 
is quite complex, taking into account that timevarying 
system dynamics, slow-moving processes with time 
delays and non-ideal behaviuor of actuators prevail. 
The AHU is one of the main components of HVAC 
systems. Two common types of AHU system are (i) 
Constant Air Volume (CAV) and (ii) Variable Air 
Volume (VAV). The most important difference between 
these two systems is that a VAV system modulates the 

air flow according to the variation of building loads, 
whereas a CAV unit supplies a constant air flow to a 
conditioned zone regardless of whether the building 
load has been changed or not. An AHU system 
typically maintains the supply air temperature (TSA) to 
the aeraulic terminals equal to the desired target 
(TSA_SP), according to the outdoor air temperature (TOA) 
as well as the return air temperature (TRA); the system 
is controlled in order to automatically operate the 
outdoor air damper (UDamper_OA), the exhaust air damper 
(UDamper_EA) as well as the mixed air damper 
(UDamper_MA) for appropriately regulate the air 
temperature (TMA) before entering the heating and/or 
cooling coils; the operation of the heating and/or 
cooling coils is managed by the control signals of the 
heating valve (UHValve) and cooling valve (UCValve). Other 
parameters generally monitored in AHUs are the 
supply airflow rate ( !m SA or QSA), supply air pressure 
(pSA), outdoor relative humidity (RHOA), return air 
relative humidity (RHRA), supply air relative humidity 
(RHSA), and control signal of fans (UFans). 

Table 1: Strengths, Weaknesses and Suitability of FDD Techniques [22] 

FDD Technique Strengths Weakness Suitability 

Quantitative 
model-based 
methods 

They are based on sound physical or engineering 
principles. 
They provide the most accurate estimators of output 
when they are well formulated. 
They can model both normal and “faulty” operation. 

They can be complex and computationally 
intensive. 
The effort required to the development is 
significant. 
They generally require many inputs to 
describe the system, some of which 
values may not be readily available. 
Extensive user input creates opportunities 
for poor judgment or input errors that can 
have significant impacts on results. 

They are unlikely 
to emerge as the 
method of choice 
in the future 

Qualitative 
model-based 
methods 

They are well suited for data-rich environments and 
noncritical processes. 
They are simple to develop and apply. 
Their reasoning is transparent, and they provide the 
ability to reason even under uncertainty. 
They possess the ability to provide explanations for 
the suggested diagnoses because the rely on cause-
effect relationships. 
Some methods provide the ability to perform FDD 
without precise knowledge of the system and exact 
numerical values for inputs and parameters. 

They are specific to a system or a 
process. 
It is difficult to ensure that all rules are 
always applicable and to find a complete 
set of rules, especially when the system is 
complex. 
They depend on the expertise and 
knowledge of the developer. 

They may offer 
the most 
expedient way to 
meet analytical 
needs where 
more rigorous 
approaches are 
time or cost 
prohibitive. 

Process history-
based methods 

They are well suited to problems for which theoretical 
models of behaviour are poorly developed or 
inadequate to explain observed performance 
They are suited when training data are plentiful or 
inexpensive to create or collect. 
Black-box models are easy to develop and do not 
require an understanding of the physics of the 
system being modeled. 
Computational requirements may vary, but they are 
generally manageable.  

Gray-box models based on first principles 
require a thorough understanding of the 
system and expertise in statistics. 
Most models cannot be used to 
extrapolate beyond the range of the 
training data. 
A large amount of training data is needed, 
representing both normal and “faulty” 
operation. 
They are specific to the system for which 
they are trained and rarely can be used on 
other systems. 

They are suitable 
for virtually any 
kind of for which 
significant 
amounts of 
measured data 
are available. 
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Table 2: Comparison of FDD Techniques Based on Performance Criteria [43] 

Modeling Technique Prediction Accuracy Generalization capability Train data Requirement Complexity Level 

White-box Low High Low High 

Black-box High/Medium/Low Low/Medium High Low 

Gray-box High Medium Medium Medium  

 

Table 3a: Descritpion of White-Box Models under Analysis 

Modeling 
Technique Type of building Year Location Type of AHU Component of AHU 

object of study Reference 

Office building 1996 Varennes (Canada) VAV  All sub-systems [44] 

Commercial building 1996 Zug (Switzerland) VAV All sub-systems [45] 

Laboratory building 1999 - VAV All sub-systems [46] 

Laboratory building 2001 - VAV All subsystems [47] 

College building 2006 Washington D.C. (USA) VAV All sub-systems [48] 

Various buildings 2006 Various sites VAV All sub-systems [49] 

- 2014 - - All sub-systems [50] 

University building 2017 Chang’an (China) VAV  All sub-systems [51] 

White-box 
models 

University building 2019 Boston (USA) VAV All sub-systems [52] 

 

Table 3b: Descritpion of Black-Box Models under Analysis 

Laboratory building 1999 - VAV All sub-systems [46] 

Commercial office building 1999 Kawasaki (Japan) VAV All subsystems [53] 

Laboratory building 1999 Paris (France) VAV Cooling coil [54] 

- 2004 - VAV All subsystems [55] 

Black-box 
models 

- 2008 - VAV All subsystems [56] 

 

Table 3c: Descritpion of Gray-Box Models under Analysis 

Office building 2001 Steinhausen (Switzerland) CAV All subsystems [57] 

Laboratory building 2001 - VAV All subsystems [47] 

University building 2016 Ottawa (Canada) VAV  All subsystems [39] 

Office building 2017 Ottawa (Canada) VAV All subsystems [29] 

University building 2018 Ottawa (Canada) VAV All subsystems [58] 

Gray-box 
models 

University building 2019 Shenyang (China) - All subsystems [59] 

 

In this paper eighteen papers available in current 
literature referring to the application of FDD systems to 
AHUs are analyzed; they are summarized in the 
following Tables 3-7. In particular, Tables 3a, 3b and 
3c report the type of FDD technique (white-box, gray-
box or black-box), year of the study, type of building, 
location, type of AHU (VAV or CAV) and components 

of AHU under investigation. Table 4 shows the number 
and type of parameters monitored by the FDD systems, 
purpose of the study (fault detection/diagnosis and/or 
optimization), investigation approach (experimental 
and/or simulation), adopted software in the case of 
simulations. Tables 5, 6 and 7 indicate the main results 
as well as the weakness of the studies using white-box 
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Table 4: Monitored Parameters, Purpose and Approach of the Studies under Analysis 

Modeling 
Technique Reference Monitored parameters 

Number 
of 

detected 
faults  

Purpose 
Approach 

(Simulation 
and/or 

Experimental) 

Software 

[44] TOA, TRA, TSA 3 Fault detection Simulation Simulink [60], 
MatLab [61] 

[45] TOA, TRA, TSA, TSA_SP 3 Fault detection Simulation and 
Experimental PROLOG [62] 

[46] pSA, QRA, QSA, TMA, TRA, TSA  6 Fault detection Simulation and 
Experimental 

Non-commercial 
software 

[47] 

QMA, QRA, QSA, RHOA, RHRA, 
RHSA, TMA, TOA, TSA, UCValve, 

UDamper_EA, UDamper_OA, UDamper_RA, 
UFans, UHValve 

7 Energy efficiency 
and fault detection Simulation Non-commercial 

software 

[48] 
Operation mode of the plan, 

RHOA, RHRA, TMA, TOA, TRA, TSA, 
TSA_SP, UCValve, UDamper_MA 

8 Fault detection Simulation and 
Experimental 

Non-commercial 
software 

[49] 
TOA, TSA, TRA, TSA_SP, TMA, RHOA, 
RHRA, UDamper_MA, UCValve, UHValve, 

UHValve 
4 Energy efficiency 

and fault detection Simulation Non-commercial 
software 

[50] 
QRA, QSA, RHMA, RHRA, RHSA, TMA, 
TOA, TRA, TSA, UCValve, UDamper_EA, 

UDamper_MA, UDamper_OA, UHValve 
3 Fault detection Simulation and 

Experimental 
Non-commercial 

software 

[51] QCW, QSA, TRoom, TSA  5 Energy efficiency 
and fault detection Simulation TRNSYS [63] 

White-box 
models 

[52] TMA, TOA, TRA, TSA,  2 Energy efficiency 
and fault detection 

Simulation and 
Experimental 

Non-commercial 
software 

[46] pSA, QRA, QSA, TMA, TRA, TSA 7 Fault detection Experimental - 

[53] 
QCW, QHW, QSA, TCW, THW, TRoom, 

TSA, UDamper_EA, UDamper_OA, U 

Damper_MA 
4 Fault detection Experimental - 

[54] RHRA, RHSA, TCW, TRA, TRCW, TSA, 
UCValve, UFans 

2 Fault detection Simulation and 
Experimental 

Non-commercial 
software 

[55] pSA, QRA, QSA, RHMA, TMA, TOA, 
TRA, TSA 6 Fault detection Simulation and 

Experimental 
Non-commercial 

software 

Black-box 
models 

[56]  !m CW,  !m OA,  !m RA,  !m SA, RHOA, 
RHRA, TCW, TOA, TRA, TRCW, TSA 8 Energy efficiency 

and fault detection Simulation Non-commercial 
software 

[57] 
Operation mode of the plan, TOA, 

TRA, Troom, Troom_SP, TSA, TSA_SP, 
UCValve, UHeat recov, UHValve 

4 Energy efficiency 
and fault detection Experimental - 

[47] 

QMA, QRA, QSA, RHOA, RHRA, 
RHSA, TMA, TOA, TSA, UCValve, 

UDamper_EA, UDamper_OA, UDamper_RA, 
UFans, UHValve 

7 Energy efficiency 
and fault detection Simulation Non-commercial 

software 

[39] ELux, pSA, TOA, Troom, TSA, URads 6 Fault detection Simulation and 
Experimental EnergyPlus [64] 

[29] 
 !m SA, TOA, TRA, Troom, TSA, UCValve, 
UDamper_EA, U Damper_MA, UDamper_OA, 

UFans, UHValve 
6 Energy consumption 

and fault detection Experimental - 

[58] pSA, Troom, Troom_SP, TSA, 5 Energy efficiency 
and fault detection 

Simulation and 
Experimental EnergyPlus [64] 

Gray-box 
models 

[59]  !m SA, RHOA, TCW, THW, TOA, Troom 4 Energy efficiency 
and fault detection 

Simulation and 
Experimental 

EnergyPlus [64], 
MatLab [61] 
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Table 5: Main Results and Weaknesses of the Analyzed White-Box Methods 

Reference Main results Weakness 

[44] 

A white-box/qualitative model for detecting faults based on logical 
programming was proposed and applied to a VAV AHU. The 
predictions of the qualitative model were compared with numerical 
simulations. The comparison highlighted that it is possible to define 
a fault detector for a VAV AHU only based on qualitative 
observable features.  

The qualitative approach required only a minimal 
knowledge of the system parameters, even if it was not 
always able to discern faults that quantitative methods 
might identify. Only three faults were considered. The 
assumed steady-state operation of the system might 
occur very infrequently during normal operation. 

[45] 

A white-box/qualitative model was applied to the AHU of a 
commercial building. The measured values were used to predict 
corresponding qualitative values of the controller outputs. The 
model assumed that the system is operating under conditions 
approaching steady-state. The qualitative fault detection has 
proved its worth both in laboratory tests and on building data. The 
advantage of such method was that it is independent of 
quantitative system parameters. The same method could be 
applied to systems of widely different sizes. 

The limitations of the proposed method were typical of 
qualitative methods, i.e. although faults might be present, 
qualitative discrepancies were not observed in all 
operating states. Moreover, not all types of faults could 
be detected. Finally, once a fault was detected, the 
qualitative symptoms might often be insufficient to 
diagnose the cause unambiguously. 

[46] 

The object of this study was to demonstrate the application of 
several classification techniques to the problem of detecting and 
diagnosing faults in data generated by an AHU of a laboratory 
building. In particular, two different white-box/qualitative methods 
were used and seven different types of failure were considered. 
With reference to six faults (except that one related to the cooling 
coil valve stuck), the results highlighted a very good performance 
of both methods together with a negligible difference between the 
two proposed approaches.  

A not negligible percentage of misdiagnoses were found, 
even if it was believed to be faults associated with the 
malfunctioning of some sensors. Furthermore, the rules 
on which the two methods were based were not 
sophisticated enough to handle more complex plants. 
The conclusions of this work were drawn from a single 
study not fully exhaustive in terms of number and type of 
faults. 

[47] 

Results are presented from controlled field tests of two FDD 
methods (a white-box and a gray-box models) for detecting and 
diagnosing faults in HVAC equipment. The tests were conducted in 
a unique research building that featured three air-handling units. 
Faults were introduced into the air-mixing, filter-coil, and fan 
sections of each of the three air-handling units. Both methods 
detected nearly all of the faults in the two matched air-handling 
units but fewer of the unknown faults in the third air-handling unit. 
Fault diagnosis was more difficult than detection. 

The white-box method misdiagnosed several faults and it 
required a larger number of sensors than the gray-box 
model, although the latter method required power meters 
that are not typically installed. The white-box model 
required training data for each subsystem model to tune 
the respective parameters so that the model predictions 
more precisely represent the target system. 

[48] 

This paper presented an expert rule set to identify eight fairly 
obvious AHU operation problems and examined the performance 
of the rule set using simulation and field data. The rule set was 
structured in accordance with the discrete modes of operation of 
typical AHUs and was fairly intuitive to individuals familiar with the 
operation of AHUs. The results were encouraging. 

Field testing of the rules is needed to identify appropriate 
values of user-selected parameters and to ensure the 
validity of the rules. This paper did not attempt to 
thoroughly assess the false alarm rate. 

[49] 

An FDD method consisting of a set of expert rules, derived from 
energy and mass balances, was tested in both an emulation study 
and a field study. The results highlighted the proposed FDD 
method is effective in detecting a variety of common mechanical 
and control faults and it is suitable to be embedded in commercial 
HVAC equipment controllers 

A relevant amount of information must be provided. The 
performance of the method was greatly dependent on the 
threshold values of monitored parameters for setting the 
alarms. 

[50] 

This paper presented a comparison between two white-box 
models (one quantitative and the other qualitative) that can be 
used to detect and diagnose various faults that occur in AHUs. 
Comparative results of both methodologies on an air handling unit 
are presented and thoroughly discussed using as a benchmark the 
rule-based approach known as air-handling unit performance 
assessment rule-set. 

Both model based diagnostics approaches produced very 
similar results in terms of diagnostics power and 
robustness of the solutions. The main difference between 
both approaches is the time at which the highest amount 
of computational resources was needed. For the 
qualitative approach this was at set-up time in order to 
generate the qualitative diagnostic’s models. In the case 
of the quantitative one, more power was needed during 
operation time as a higher amount of simulations are run 
for each diagnostics event. 

[51] 

A white-box/qualitative model in a VAV AHU was proposed and 
five typical faults were investigated in cooling mode. The results 
showed that the trends of specific variables caused by different 
faults could be used to distinguish one fault from others. It was an 
efficient method to optimize the operation of AHU, allowing to 
determine the influence of different faults by comparing the actual 
value with the optimized energy consumption of the equipment. 

Although the method showed positive results, it was only 
a prototype version of the FDD system. Moreover, it 
focused on an AHU system operating under simplified 
control logics by considering only 5 typical faults. 

[52] 
This paper presented an expert rule-based fault detection in a VAV 
AHU with minimal non-intrusive measurements able to check one 
or multiple faults at the same time. 

Simple models were usedm not able to provide a detailed 
insight about the origin of faults. Only two faults were 
considered. 
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Table 6: Main Results and Weaknesses of the Analyzed Black-Box Methods 

Reference Main results Weakness 

[46] 

The object of this study was to demonstrate the application of several 
classification techniques to the problem of detecting and diagnosing faults 
in data generated by an AHU of a laboratory building. In particular, three 
different black-box methods were used and seven different types of failure 
were considered. The results highlighted a very good performance of all 
three methods together with a negligible difference between the two 
proposed models. 

A not negligible percentage of misdiagnoses were 
found, but it was believed to be faults associated 
with the malfunctioning of some measurers. The 
good conclusions of this work were drawn from a 
single study that was by no means exhaustive in 
terms of the number and type of faults, complexity 
of the methods considered and training data used. 

[53] 

A real-time black-box tool for a VAV AHU was developed using a signed 
directed graph as a qualitative model of the system. The signed directed 
graph model was more compact than rules-based model so that the 
engineering effort can be minimized. It was able to detect the symptoms 
of the faults and find the cause of the faults. Good results were obtained. 

The good performance of the method depended 
on the thresholds setting. If the thresholds were 
not set properly, the diagnosis system would have 
made wrong diagnosis. Moreover, threshold 
setting was difficult and time-consuming. Finally, 
the number of the causes was too low (between 3 
and 6). 

[54] 

The method consisted in comparing the real behaviour of a cooling coil of 
a VAV AHU to a normal/healthy behaviour given by an ANN trained during 
a preliminary phase. Theremore, a physical model was developed and 
tested to produce training data for the ANN. The resulting detector was 
tested on normal behavior as well as faulty operation; no false alarm 
appeared and the faults are detected. 

The performance of the detector was linked to the 
quality of these data. The database for fouling 
detection was too poor. The experiments have to 
be completed to really conclude on this side. 

[55] 

The FDD scheme consisted in process estimation, residual generation 
and fault detection and diagnosis. General regression neural network 
models were used for generating estimates of sensor values and control 
signals that were then compared to actual values to calculate the 
residuals. Faults were detected when the residuals exceed the threshold 
values established for normal operation. The main advantage of the 
method was that a detailed mathematical model was not needed. 

The good performance of the method was 
affected by the thresholds setting. If the 
thresholds were not set properly, the diagnosis 
system would have made wrong diagnosis. The 
model was based on steady-state equations and 
approximate first-order dynamics. Moreover, it 
focused on an AHU system operating under 
simplified control logics by considering only 7 
typical faults. 

[56] 

A data-driven method based on principal component analysis and Fisher 
discriminant analysis to detect and diagnose multiple faults including fixed 
bias, drifting bias, complete failure of sensors, air damper stuck and water 
valve stuck occurring in AHU was proposed. Multi-level strategies were 
developed to improve the diagnosis efficiency. 

- 

 

Table 7: Main Results and Weaknesses of the Analyzed Gray-Box Methods 

Reference Main results Weakness 

[57] 

The Performance Audit Tool, based on an expert system, had the goal 
of fault detection and diagnosis. A gray-box model was applied to a 
CAV air-conditioning system. The number of rules and the complexity 
of the system were important factors influencing the performance of the 
FDD system. 

The prototype version of the model was not further 
developed to a full product. Setting up at several new 
sites was too costly. The lessons learned was used 
to avoid similar difficulties with a new version. 

[47] 

Results are presented from controlled field tests of two FDD methods 
(a white-box and a gray-box models) for detecting and diagnosing 
faults in HVAC equipment. The tests were conducted in a unique 
research building that featured threeair-handling units. Faults were 
introduced into the air-mixing, filter-coil, and fan sections of each of the 
three air-handling units. Both methods detected nearly all of the faults 
in the two matched air-handling units but fewer of the unknown faults in 
the third air-handling unit. Fault diagnosis was more difficult than 
detection. 

The method demonstrated great success in 
diagnosis, although the limited number of faults 
addressed in the tests contributed to this success. 
The white-box method required a larger number of 
sensors than the gray-box model, although the latter 
method required power meters that are not typically 
installed. 

[39] 

A linear fault detection algorithm for VAV AHU was implemented using 
Kalman filter-based methods with a reduced order energy balance 
model; its performance was tested using both simulation and 
experimental data. The method was able to detect most of the fault 
cases.  

A multiple fault caused the method to perform poorly. 
Only limited cases of faults were created. Further 
tests with more faults can further validate the 
performance of this method. 
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(Table 7). Continued. 

Reference Main results Weakness 

[29] 

An inverse gray-box modelling-based automated commissioning 
approach was put forward for VAV AHU to detect and diagnose both 
hard and soft faults. By using a dataset, several hard and soft faults 
were identified. 

Comprehensive fault-symptom datasets were 
needed to establish cause-effect relationships 
between model parameters and common building 
faults. It was unsure whether or not the method was 
able to diagnose multiple faults affecting the model 
parameters simultaneously. Fault prioritization was 
not studied. 

[58] 

A gray-box model using probabilistic representations for faults and 
symptoms was applied in a VAV AHU. The fault diagnostic agent used 
a novel technique based on a dynamic Bayesian network. This enabled 
the detection of minor persistent faults as well as transient faults, while 
keeping a good performance of the FDD system. The structure of the 
proposed model allowed the integration with other fault detection 
methods. The fault evaluation task was performed using both 
simulation-based and statistical-driven methods using evidence 
gathered from the fault detection agents. 

Construction of the conditional probabilities between 
the faults and symptoms is still manual and relies on 
expert knowledge. In addition, even if the model 
reduced the number of required inputs, the number 
of values to be defined might still become 
unbearable when the FDD system became 
sufficiently large. Many complicated faults, that were 
not measured directly and nonlinear parameters that 
were difficult to estimate, could not be evaluated 
unless more advanced modeling or sensing 
techniques were adopted.  

[59] 
The results showed that this method can detect the fault of an AHU as 
well as effectively reduce the rate of false alarm. 

The study was not fully exhaustive in terms of 
number and type of faults. Only limited cases of 
faults were created. 

 
models, black-box models and gray-box models, 
respectively.  

The data reported in the tables highlight that: 

- white-box methods are generally the most 
common, even if in the last years the application 
of both black-box and gray-box methods has 
increased; 

- white-box methods are characterized by some 
drawbacks, such as a relevant complexity due to 
the need of a detailed knowledge of the physical 
laws governing the processes as well as the 
significant number of parameters to be taken into 
account (sometimes a steady-state operation 
and/or a simplified scheme is assumed in the 
development of white-box methods in order to 
deal with this complexity); in addition, it can be 
noticed that white-box methods developed for a 
specific AHU is not general, so that they cannot 
be also used for a different AHU; 

- once fully developed, white-box methods are 
simple to be used; in addition, it should be 
considered that they need no experimental data 
or only a few measurement points. Finally, it 
could be highlighted that white-box methods 
could obtain an accuracy level similar to that one 
of black-box and gray-box methods; 

- black-box models are more flexible with respect 
to the white-box models mainly thanks to the fact 

that they do not require a detailed knowledge of 
the physical laws governing the process; this is 
the main reason why they are becoming more 
and more popular. In addition, it can be noticed 
that they can be also applied to AHUs different 
with respect the one used for the development of 
the model; 

- due to the limited knowledge of the process 
behind black-box models, they are generally not 
able to diagnose/identify the causes of faulty 
operation; in addition, their performance is 
usually significantly dependent on the amount of 
experimental data used for the development; 

- gray-box models have been recently developed; 
they represent a sort of mix between black-box 
and white-box models, highlighting intermediate 
benefits/drawbacks; 

- in general, the analyzed papers highlight 
encouraging results in terms of the capability to 
detect and diagnose the defects (whatever the 
modeling technique is); however, the number of 
defects that can be recognized is usually low 
(between 2 and 8) together with a reduced 
possibility to identify several faults 
simultaneously. These aspects have to be 
further investigated in the future studies. 

5. CONCLUSION  

In the first part of this review, a classification 
scheme for FDD methods was described and the 
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strengths and weaknesses of each approach was 
identified. 

In the second part of the paper, eighteen scientific 
works concerning the application of FDD methods to 
Air-Handling Units were analyzed. In particular, the 
type of FDD technique (white-box, gray-box or black-
box), year of the study, type of building, location, type 
of AHU (VAV or CAV), components of AHU under 
investigation, number and type of parameters 
monitored by the FDD systems, purpose of the study 
(fault detection/diagnosis and/or optimization), 
investigation approach (experimental and/or 
simulation), adopted software in the case of simulations 
were identified for each paper.  

In addition, the main results and potential of all the 
studies were described in detail, highlighting the main 
gaps in research to be further investigated.  

The main results of the review can be summarized 
as follows [14, 22]: 

- although quantitative model-based FDD methods 
are most accurate and reliable, they are 
generally more complex and computationally 
intensive compared to models based on other 
approaches; therefore, these are unlikely to be 
the methods of choice in the near future, 
especially for real-time applications; 

- qualitative model-based FDD methods are well 
suited for data-rich environments and non-critical 
processes; they may represent the most 
expedient way to meet analytical needs where 
more processing-intensive approaches are time 
and cost prohibitive; 

- FDD methods based on process historyare easy 
to develop and use and, therefore, suitable for 
virtually any kind of problem for which significant 
amounts of measured data are available; 

- the application of FDD mehods to HVAC units is 
still in its infancy with key technical HVAC 
systems is the dearth of data. Relatively small 
numbers of sensors are generally installed in 
building systems and the quality (accuracy, 
precision, and reliability) of the sensors that are 
installed is inadequate for many uses. 
Furthermore, that there is currently little 
guidance in terms of minimal sensors for FDD 
systems. Performance, cost, and durability need 
to be addressed to promote better sensing in 
buildings.  

NOMENCLATURE 

Acronyms 

AHU air-handling unit 

ANN artificial neural network 

CAV 

ECBCS 

constant air volume system 

Energy Conservation in Buildings and 
Community System 

FDD fault detection and diagnosis 

GHG 

HVAC 

Greenhouse Gases 

heating, ventilation and air conditioning 

IEA 

VAV 

International Energy Agency 

variable air volume system 

Parameters 

ELux luminance measured from the 
ceiling 

(cd/m2) 

 !m CW mass flow rate of water entering 
the cooling coil  

(kg/s) 

 !m OA outdoor air mass flow rate (kg/s) 

 !m RA return air mass flow rate (kg/s) 

 !m SA supply air mass flow rate (kg/s) 

pSA supply air pressure (bar) 

QCW volumetric flow rate of water 
entering the cooling coil 

(m3/s) 

QHW volumetric flow rate of water 
entering the heating coil 

(m3/s) 

QMA mixed volumetric air flow rate (m3/s) 

QRA return volumetric air flow rate (m3/s) 

QSA supply volumetric air flow rate (m3/s) 

RHMA mixed air relative humidity (%) 

RHOA outdoor air relative humidity (%) 

RHRA return air relative humidity (%) 
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RHSA supply air relative humidity (%) 

TCW temperature of water entering the 
cooling coil 

(°C) 

THW temperature of water entering the 
heating coil 

(°C) 

TMA mixed air temperature (°C) 

TOA outdoor air temperature (°C) 

TRA return air temperature (°C) 

TRCW return chilled water temperature (°C) 

TRoom room temperature (°C) 

TRoom_SP setpoint room temperature (°C) 

TSA supply air temperature (°C) 

TSA_SP setpoint of supply air temperature (°C) 

UCValve cooling valve control signal (-) 

UDamper_EA exhaust air damper control signal (-) 

UDamper_MA mixed air damper control signal (-) 

UDamper_OA outdoor air damper control signal (-) 

UDamper_RA return air damper control signal (-) 

UFans fans control signal (%) 

UHeat recov heat recovery control signal (-) 

UHValve heating valve control signal (-) 

URads radiant panel control signal (-) 
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