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Abstract: Production scheduling is one of the most important steps in the block-caving design process. Optimum 
production scheduling could add significant value to a mining project. The goal of long-term mine production scheduling 
is to determine the mining sequence, which optimizes the company’s strategic objectives while honouring the operational 
limitations over the mine life. Mathematical programming with exact solution methods is considered a practical tool to 
model block-caving production scheduling problems; this tool makes it possible to search for the optimum values while 
considering all of the constraints involved in the operation. This kind of model seeks to account for real-world conditions 
and must respond to all practical problems which extraction procedures face. Consequently, the number of subjected 
constraints is considerable and has tighter boundaries, solving the model is not possible or requires a lot of time. It is 
thus crucial to reduce the size of the problem meaningfully by using techniques which ensure that the absolute solution 
has less deviation from the original model. This paper presents a clustering algorithm to reduce the size of the large-
scale models in order to solve the problem in a reasonable time. The results show a significant reduction in the size of 
the model and CPU time. Application and comparison of the production schedule based on the draw control system with 
the clustering technique is presented using 2,487 drawpoints to be extracted over 32 years. 
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1. INTRODUCTION 

Block and panel caving have become the 
underground bulk mining methods of choice and are 
expected to continue in the foreseeable future [1]. 
Block caving is a complex and large-scale mining 
method. The application of block caving is for low-
grade, caveable, and massive ore-bodies. Block cave 
mines demand a large capital investment for the 
development and construction of any production units. 
Planning of block caving operations poses complexities 
in different areas of mining including production 
scheduling. Production scheduling consists of defining 
the source, destination and extraction time of ore and 
waste during the life of mine. Strategic planning of any 
mining system has an enormous effect on the 
economics of the operation. Production scheduling is 
one of the key components in determining mine viability 
because the mining industry faces lower grade and 
marginal reserves. In block caving projects, deviations 
from optimal mine plans may result in significant 
financial losses, future financial liabilities, resource 
sterilization, and unbalanced cave subsidence, 
fragmentation size distribution and flow of muck 
resulting in potential infrastructure instability. 
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Optimization of long-term production scheduling is a 
significant aspect of mine planning. Determining the 
period and sequence of drawing and displacement of 
ore and waste is the aim of mine planning. Such 
scheduling must maximize the overall discounted net 
revenue from the mine within the existing economic, 
technical and environmental constraints [2]. 

Block-caving scheduling has been the subject of a 
lot of research. Most studies have applied 
mathematical programming, simulation and stochastic 
approaches. A mathematical model should not over- or 
under-estimate the value of the operation and has to 
solve models in a reasonable CPU time for a large-
scale block-caving operation. Such a model, which 
seeks to account for real-world conditions, must 
respond to all practical problems which extraction 
procedures face. This means that numerous 
constraints must be built into the model; consequently, 
the size of the model increases substantially. If the 
number of subjected constraints is considerable and 
has tighter boundaries, solving the model is not 
possible or requires a lot of time. It is thus crucial to 
reduce the size of the problem meaningfully by using 
techniques which ensure that the absolute solution has 
less deviation from the original model. For this reason, 
this paper outlines an investigation into the application 
of hierarchical clustering method to reduce the size of 
the problem. The efficiency of the proposed clustering 
algorithm is evaluated through a life of mine production 
scheduling optimization containing 2,487 drawpoints. 
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2. LITERATURE REVIEW 

2.1. Mathematical Programming Methods 

Mathematical programming (MP) is the use of 
mathematical models, particularly optimizing models, to 
assist in making decisions. The MP model comprises 
an objective function that should be maximized or 
minimized while meeting some constraints that 
determine the solution space and a set of decision 
variables whose values are to be determined. 

Eiselt and Sandblom [3] divide the modelling 
process in mathematical programming into eight steps: 
(1) problem recognition, (2) authorization to model, (3) 
model building and data collection, (4) model solution, 
(5) model validation, (6) model presentation, (7) 
implementation and monitoring, and (8) control. 

The tractability of the mathematical models depends 
on the size of the problem, in terms of the number of 
variables and constraints, and the structure of the 
constraint sets. In the integer programming, as the size 
of an integer program grows, the time required for 
solving the problem increases exponentially. The most 
common problem in the mixed-integer linear 
programming formulation is the size of the branch and 

cut tree. The tree becomes so large that insufficient 
memory remains to solve the LP sub-problems. The 
size of the branch-and-cut tree can be affected by the 
specific approach one takes in performing the 
branching and by the structure of each problem. 

2.2. Block Caving 

Block caving is an underground mining method 
appropriate for low-grade and massive ore-bodies. In 
this method, the ore is extracted from the bottom of the 
orebody to the top. First, the production level is 
developed below the orebody; then the orebody is 
undercut by blasting a layer of ore. After undercutting, 
the rock mass above starts to cave under its weight 
and in-situ stresses. The broken ore is extracted by 
load-haul-dump (LHD) machines from the drawpoints 
located in the production level. Above each drawpoint, 
a draw column is considered, and the material of the 
draw column is extracted from the relevant drawpoint 
(see Figure 1). 

2.3. Production Scheduling Optimization in Block-
Cave Mining 

Using mathematical programming optimization with 
exact solution methods to solve the long-term 

 

Figure 1: Schematic view of block caving production. 
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production planning problem has proved to be robust 
and results in answers within known limits of optimality. 
The mathematical programming models which are 
considered for production scheduling are linear 
programming (LP), mixed-integer linear programming 
(MILP), non-linear programming (NLP), dynamic 
programming (DP), multi-criteria optimization, network 
optimization, quadratic program (QP), and stochastic 
programming [4]. To optimize block-caving scheduling, 
most researchers have used mathematical 
programming [6-38]. Khodayari and Pourrahimian [5] 
presented a comprehensive review of operations 
research in block caving. In most of the available 
models, considering all the operational constraints will 
result in an oversize model and solving the model is 
time-consuming and exceeds the power of current 
computational systems. 

2.4. Clustering 

lustering is defined as the process of grouping 
similar objects together in a way that maximizes intra-
cluster similarity and inter-cluster dissimilarity. 
Hierarchical clustering procedures are among the best 
known statistical methods of clustering. One of the 
main aspects in clustering algorithms is determining of 
the similarity index for all objects which must be 
grouped. In addition to the similarity of constituent 
items, the generated clusters should consider some 
constraints such as minimum and maximum cluster 
sizes, limitation on the cluster shapes, and mutually 
exclusive and inclusive objects. Due to the low 
computational power required, clustering techniques 
are applied in mine planning programs.  

Clustering classifies objects by conceptualizing 
principal configuration either as a grouping of 
individuals or as a hierarchy of groups. The cluster 
results can be studied and re-clustered if it does not 
satisfy preconceived ideas in the grouped data [39]. 
Clustering can be categorized into two major groups: 
hierarchical and partitional clustering. The hierarchical 
algorithm based on measured characteristics can 
create clusters progressively.  

In the start, each object is a separate cluster, and 
then by combining the separated clusters together 
sequentially, the number of clusters at each grouping 
stage reduces. If there are N objects, this contains N–1 
clustering stages [40]. In brief, the process of grouping 
similar entities together is the main clustering role. The 
clustering should cause to intra-cluster similarity 
maximize, and inter-cluster similarity minimize [40, 41].  

Epstein et al. [13] applied aggregation in 
underground block-sequencing operations. Weintraub 
et al. [42] to reduce the size of the MIP models used an 
aggregation priori and a posteriori clustering methods 
based on a K-means algorithm. Tonnage, percentage 
of copper and molybdenum, and speed of extraction 
were the measuring tools of the similarity between 
clusters. Because of the different importance of each 
characteristic, a set of weights related with the 
characteristics was defined. According to Weintraub 
method, each cluster can be extracted only once, and 
the given sequence of extractions must be considered. 
Draw rate as one of the important parameters was not 
established as a characteristic to measure the 
dissimilarity between clusters. Newman and Kuchta 
[43] stated that, to overcome the size of MIP problem, 
aggregated time periods in the scheduling of an iron-
ore underground mine. They used the information 
gained from the aggregated model to solve the original 
model. The original models involved 500 binary 
variables, while aggregated models, contained 260 
binary variables. Pourrahimian et al. [4, 23] formulated 
a MILP model for block caving long-term production 
scheduling. They designed a hierarchical clustering 
method to overcome the size problem of mathematical 
programming models. Their model aimed to maximize 
the NPV of the mining operation at three different levels 
of resolution: (i) aggregated drawpoints (cluster level); 
(ii) drawpoint level; and (iii) drawpoint-and-slice level; in 
the model, the mine planner has control over defined 
constraints. They attempted to find an optimal schedule 
for the life of mine, solving simultaneously for all 
periods by considering all required constraints, but they 
did not consider the geotechnical properties of rock 
mass through the draw rate constraint. They noted that 
the formulation tried to extract material from drawpoints 
with a draw rate within the acceptable range without 
considering a specific shape.  

A shortcoming of these methods is their 
dependency on the definition of similarity and their high 
sensitivity to the weights used in determining similarity. 
The proposed clustering algorithm in this paper is 
based on a hierarchical approach and is specifically 
developed to be used in solving block-caving mine 
production planning problem. 

3. CLUSTERING ALGORITHM 

Agglomerative and divisive clustering techniques 
are two distinct classes of hierarchical clustering 
algorithms. In the agglomerative technique (bottom up, 
clumping), there are n singleton clusters to start with, 
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and the process begins by successively merging 
clusters. The divisive technique (top down, splitting) 
puts all of the elements in one cluster and creates new 
clusters by sequentially splitting old clusters. The 
agglomerative procedure requires less computational 
effort compared to the divisive technique [40]. 
Aggregation techniques are highly dependent on the 
structure of the problem and tailored for a specific 
instance of a problem [43].  

In the developed clustering algorithm, the portion of 
material scheduled to be extracted from each cluster is 
assumed to be taken from all of the active drawpoints, 
based on the ratio of each drawpoint’s tonnage in the 
cluster.  

Considering the direction of mining advancement in 
forming the clusters is a key strategy when dealing with 
mine economics or geotechnical problems. It is 
essential to develop a direction factor to be included in 
the similarity index to account for the mining 
advancement direction. For this purpose, the clustering 
technique developed by Tabesh and Askari-Nasab [44] 
was modified for its application in block-cave mining. 
According to Tabesh and Askari-Nasab, after defining 
the advancement direction, the engineer should specify 
two points at the starting and ending points in the 
direction of advancement. Afterwards, the direction 
factor can be calculated using Equation (1).  

  
Ni = Sign (N i

1)2 ! (N i
2 )2( ) " (N i

1)2 ! (N i
2 )2         (1) 

Where   Ni
1 and   Ni

2  are the distances from drawpoint i 
to start and end points respectively. The sign() function 
returns +1 if the value is positive and -1 if the value is 
negative. 

The elements aggregation procedure needs a 
similarity measure or similarity index that quantifies the 
similarity between two objects. Various properties can 
be taken into account when defining similarities 
between draw columns. The multiple similarity indices 
algorithm are used in place of existing similarity index 
clustering models that contain weight factors defined by 
the planner.  

Increasing the number of properties used in 
similarity calculations increases the complexity of the 
index, in terms of not representing a unique physical 
attribute. The developed algorithm aggregates the draw 
columns into clusters based on center-by-center 
distance, grade distribution, maximum draw rate 
according to the production rate curve (PRC), and 

advancement direction. The general procedure of the 
proposed algorithm is as follows: 

1. Define the number of required similarity indices 
according to the mining operation; 

2. Define a search radius; 

3. Each draw column is considered as a cluster. 
The similarities between clusters are the same 
as the similarities between the objects they 
contain in each index. 

4. Define the maximum number of required clusters 
and the maximum number of allowed draw 
columns within each cluster for each index. 

5. Similarity values are calculated for the 
considered similarity index. 

6. The most similar pair of clusters is merged into a 
single cluster. 

7. The similarity between the new clusters and the 
rest of the clusters is calculated. Steps 3 to 6 are 
repeated until the maximum number of clusters 
is reached or there is no pair of clusters to merge 
because the maximum number of allowed draw 
columns has been reached. 

8. For the next similarity index, define an intra-
cluster adjacency matrix for draw columns that 
are located within two different clusters.  

9. Repeat steps 3 to 7 for the similarity index 
defined in step 8. 

For the first step, the similarity index is calculated 
based on the distance and the most similar pair of 
clusters is merged into a single cluster (Equation (2)): 

  
SI1 =

1
Dij ! Nij-SI1

! Aij            (2) 

Where SI1 is the similarity index of step 1 (distance), 

 

1
Dij ! Nij-SI1

 is the similarity value between draw 

columns i and j, Dij is the normalized distance value 
between the center line of draw columns i and j, 

 
Nij-SI1

is 

the normalized Euclidean distance between values Ni 
and Nj for SI1, and Aij is the adjacency factor between 
draw columns i and j. If the distance is less than the 
defined search radius, Aij is 1; otherwise, it is 0. Since 
the clustering is performed on the production level, the 
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z value of coordinates is not taken into account. This 
form the distance matrix for the production level. The 
matrix is then normalized by dividing all elements by 
the maximum value in the matrix. 

The similarity between the new clusters and the rest 
of clusters is calculated. After calculating the similarity, 
the mentioned steps are repeated until the maximum 
number of clusters is reached or there is no pair of 
clusters to be merged, because the maximum number 
of allowed draw columns has been reached.  

For the second step, similarity based on the 
maximum allowable draw rate, an intra-cluster 
adjacency matrix for draw columns that are located 
within two different clusters is required (Equation (3)): 

  
SI2 = SI1 !

1
MaxDRij ! Nij-SI2

! ISAij          (3) 

Where 
  
SI1 !

1
MaxDRij ! Nij"SI2

 is the similarity value 

between draw columns i and j, and ISAij is the second 
inter-cluster adjacency factor between draw columns i 
and j. If draw columns i and j are in the same cluster as 
they were in the first step, ISAij is 1; otherwise, it is 0.  

In the third step, similarity is calculated based on 
the grade of draw columns (Equation (4)): 

  
SI3 =SI1 !

1
Gradeij ! Nij-SI3

! ITAij           (4) 

Where 
  
SI1 !

1
Gradeij ! Nij"SI3

 is the similarity value 

between draw columns i and j, Gradeij is the 
normalized grade difference between draw columns i 
and j, and ITAij is the third intra-cluster adjacency factor 
between draw columns i and j. If draw columns i and j 
are in the same cluster as they were in the second 
step, ITAij is 1; otherwise, it is 0. This algorithm 
indirectly controls practical cave advancement. 

4. ILLUSTRATIVE EXAMPLE 

The production schedule of 2,487 drawpoints based 
on a defined PRC and cluster approach is investigated 
in this section. The total tonnage of material is 803.91 
(Mt) with an average density of 2.2 (t/m3) and an 
average grade of 0.36%Cu. Figure 2 illustrates the 
tonnage and grade distributions of the draw columns.  

For production scheduling, the MILP model 
presented by Nezhadshahmohammad and 
Pourrahimian [37] modified for cluster resolution and 
then used in this study. It should be noted that the 
original model was not able to solve the current 
problem because of the size that. The original model is 
at drawpoint level. The model was tested using a Dell 
Precision T7600 computer with Intel(R) Xeon(R) at 2.3 
GHz, with 64 GB of RAM. The maximum depletion 
percentage of the drawpoints from the ramp-up to 
steady and steady to the ramp-down were 40% and 
85%, respectively. A gap tolerance (EPGAP) of 5% 
was used as an optimization termination criterion. The 

 

Figure 2: Tonnage (orange) and grade (yellow) distributions of draw columns. Each blue dot represents a draw column. 
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additional production scheduling parameters have been 
summarized in Table 1. 

Table 1: Production Scheduling Parameters  

Parameters Value 

Maximum activity (periods) 5 

Mining capacity (Mt) 15 – 27.5 

Draw rate of draw columns (kt/period) 30 – 100 

Number of new clusters per period 0 – 11 

Production grade (%Cu) 0.3 – 0.6 

Number of maximum active clusters 
per period 25 

First step 10 

Second 
step 40 Max. number of clusters 

Third step 109 

First step 350 

Second 
step 80 Max. number of draw columns 

Third step 25 

Adjacency radius (m) 22 

Discount rate (%) 12 

 

Figure 3 shows the proposed clustering method for 
2,487 drawpoints. The clustering was done in three 
steps. These steps were based on (i) the distance 
between drawpoints in the advancement direction, (ii) 
draw rate of drawpoints, and (iii) grade of draw 
columns. The advancement direction was determined 
based on the method presented by Khodayari and 
Pourrahimian [25]. The mining advancement direction 
in this case study is from south to north. The maximum 
number of clusters defined in the first, second, and 
third steps were 10, 40, and 109 respectively. 

The problem was modelled both with and without 
clustering the drawpoints. The total number of 
constraints in the model without clustering was 
610,548. The number of continuous and binary 
variables were 79,296 and 158,592 respectively. The 
model did not generate a solution after being run for 15 
days.  

The model with clusters comprised of 30,516 
constraints and the number of continuous and binary 
variables were 3,488 and 6,976 respectively. Using the 
multi-similarity index aggregation technique resulted in 
a 95% reduction in the number of binary variables. The 
clustered model was solved in 37.8hrs. 761.87Mt of ore 

 

Figure 3: Application of the proposed clustering algorithm for 2,478 draw columns. 
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was extracted during 32 years of production generating 
NPV of $304.6 B. 

Figure 4 shows the cash flow, tonnage mined, and 
average grade of production in each period for the 
clustered model. The required ramp-up and ramp-down 
for the total production mine life is achieved in the 
resulting production plan. 

 

Figure 4: Annual cash flow, tonnage mined and average 
grade of production from the clustered model. 

Figure 5 shows the grade distribution in the clusters. 
Figure 6 illustrates the starting period of extraction from 
cluster during the mine life. The starting period of 
drawpoints shows the advancement direction of caving 
achieved through production scheduling optimization. 

 

Figure 5: Grade distribution in the clustered model. 

Following the defined sequence of extraction, the 
high-grade clusters are extracted during periods 15 to 
21 (Figure 6). As a result, the grade of mine production 
increases during that period of time (Figure 4). 
Because of the application of the production rate curve 

for draw control, it is expected there will be less dilution 
during the mine life. 

 

Figure 6: Starting period of different areas over the mine life. 

Figure 7 shows the maximum number of active 
clusters and number of new clusters which had to be 
opened in each period. The number of active clusters 
in period 1 is equal to the number of new clusters 
which opened. From periods 12 to 15, this number 
gradually reduces. The number of new clusters opened 
in period 1 could be equal to the maximum allowable 
number of active clusters to reach the required 
production in this period. There was no need to open 
new clusters in periods 7, 9, 10, 14, 16, 18, 19, 29, 30, 
31, and 32. 

 

Figure 7: Number of active and new clusters in the model. 

The results show that all the defined constraints 
have been satisfied. The starting and finishing periods, 
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and draw rates for each cluster are outputs of the 
optimization. The model extracts the material from 
each cluster based on the defined PRC model while 
maximizing the NPV of the operation.  

5. CONCLUSION 

This paper presented an aggregation approach to 
use in block cave production scheduling. Because of 
the size of the problem, the model could not be solved 
within a reasonable time. The clustering techniques 
implemented resulted in a 95% reduction in the number 
of binary variables which made it possible to solve the 
same problem in an acceptable CPU time. The solution 
time would enable the mine planner to analyze different 
scenarios during the feasibility studies. The presented 
aggregation approach eliminates dependency on the 
weighting factor in the current clustering techniques; as 
a result, reducing the effect of human errors on the 
optimality of the production schedule. Using the 
presented clustering approach with the mathematical 
formulations, the life of mine production schedule for 
large-scale block caving operations can be optimized.  
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