Oxidative Removal of Volatile Organic Compounds over the Supported Bimetallic Catalysts


Volatile organic compound, Oxidative removal, Supported noble bimetallic catalyst, Supported noble metal-transition metal or rare-earth catalyst, Supported non-precious bimetal catalyst.

How to Cite

Zhiquan Hou, Wenbo Pei, Xing Zhang, Yuxi Liu, Jiguang Deng, Hongxing Dai. Oxidative Removal of Volatile Organic Compounds over the Supported Bimetallic Catalysts. Glob. Environ. Eng. [Internet]. 2020 Jul. 16 [cited 2023 Jan. 28];7(1):1-27. Available from: https://www.avantipublishers.com/index.php/tgevnie/article/view/923


 Volatile organic compounds (VOCs) and methane are pollutants that are harmful to the atmosphere and human health. It is highly required to control emissions of VOCs. Catalytic oxidation is one of the most effective pathways for the elimination of VOCs, in which the key issue is the development of novel and high-performance catalysts. In this review article, we briefly summarize the preparation strategies, physicochemical properties, catalytic activities, and stability for the oxidative removal of VOCs of the supported bimetallic catalysts that have been investigated by our group and other researchers. The supported bimetallic catalysts include the supported noble bimetal, supported noble metal-transition metal, and supported non-precious bimetal catalysts. It was found that catalytic performance was related to one or several factors, such as specific surface area, pore structure, particle size and dispersion, adsorbed oxygen species concentration, reducibility, lattice oxygen mobility, acidity, reactant activation ability, and/or interaction between bimetals or between metal and support. The stability and ability of anti-poisoning to water, carbon dioxide or chlorine were related to the nature of the bimetal and support in the catalysts. In addition, we also envision the development trend of such a topic in the future work.


Deng JG, He SN, Xie SH, Yang HG, Liu YX and Dai HX. Research advancements of ordered porous metal oxide catalysts for the oxidative removal of volatile organic compounds. Chem J Chinese Univ 2014; 35: 1119-1129 (in Chinese). http://dx.doi.org/10.7503/cjcu20131271

Kamal MS, Razzak SA and Hossain MM. Catalytic oxidation of volatile organic compounds (VOCs) − A review. Atmos Environ 2016; 140: 117-134. http://dx.doi.org/10.1016/j.atmosenv.2016.05.031

Liu YX, Deng JG, Xie SH, Wang ZW and Dai HX. Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts. Chinese J Catal 2016; 37:1193-1205. http://dx.doi.org/10.1016/S1872-2067(16)62457-9

Wang Y, Arandiyan H, Scott J, Bagheri A, Dai HX and Amal R. Recent advances in porous metal oxides for heterogeneous catalysis: a review. J Mater Chem A 2017; 5: 8825-8846. http://dx.doi.org/10.1039/c6ta10896b

Gürbüz H, Şöhret Y and Akçay H. Environmental and enviroeconomic assessment of an LPG fueled SI engine at partial load. J Environ Manage 2019; 241: 631-636. http://10.1016/j.jenvman.2019.02.113

Gürbüz H. The effect of H2 purity on the combustion, performance, emissions and energy costs in an SI engine. Thermal Sci 2020; 24: 37-49. http:// 10.2298/TSCI180705315G

Gürbüz H and Akçay H. Experimental investigation of an improved exhaust recovery system for liquid petroleum gas fueled spark ignition engine. Thermal Sci 2015; 19: 2049- 2064. http:// 10.2298/TSCI150417181G

He C, Cheng J, Zhang X, Douthwaite M, Pattisson S and Hao ZP. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources. Chem Rev 2019; 119: 4471-4568. https://doi.org/10.1021/acs.chemrev.8b00408

Zhao XT, Xie SH, Yang HG, Deng JG and Dai HX. Catalytic removal of volatile organic compounds over porous catalysts. Global Environ Eng 2015; 2: 1-14. http://dx.doi.org/10.15377/2410-3624.2015.02.01.1

Huang HB, Xu Y, Feng QY and Leung DYC. Low temperature catalytic oxidation of volatile organic compounds: a review. Catal Sci Technol 2015; 5: 2649-2669. http://dx.doi.org/10.1039/C4CY01733A

Arandiyan H, Wang Y, Sun HY, Rezaei M and Dai HX. Ordered meso- and macroporous perovskite oxide catalysts for emerging applications. Chem Commun 2018; 54: 6484- 6502. http://dx.doi.org/10.1039/c8cc01239c

Li XY, Liu YX, Deng JG, Xie SH, Zhao XT, Zhan Y, et al. Enhanced catalytic performance for methane combustion of 3DOM CoFe2O4 by co-loading MnOx and Pd–Pt alloy nanoparticles. Appl Surf Sci 2017; 403: 590-600. https://dx.doi.org/10.1016/j.apsusc.2017.01.237

Persson K, Ersson A, Colussi S, Trovarelli A and Jaras SG. Catalytic combustion of methane over bimetallic Pd–Pt catalysts: The influence of support materials. Appl Catal B: Environ 2006; 66: 175-185. https://dx.doi.org/10.1016/j.apcatb.2006.03.010

Xu P, Wu ZX, Deng JG, Liu YX, Xie SH, Guo GH, et al. Catalytic performance enhancement by alloying Pd with Pt on ordered mesoporous manganese oxide for methane combustion. Chinese J Catal 2017; 38: 92-105. https://dx.doi.org/10.1016/S1872-2067(16)62567-6

Amir HH, Robert EH and Natalia S. Evaluation of hydrothermal stability of encapsulated PdPt@SiO2 catalyst for lean CH4 combustion. Appl Catal A: Gen 2018; 556: 129- 136. https://dx.doi.org/10.1016/j.apcata.2018.02.034

Tofighi G, Yu XJ, Lichtenberg H, Doronkin DE, Wang W, Wöll C, et al. Chemical nature of microfluidically synthesized AuPd nanoalloys supported on TiO2. ACS Catal 2019, 9: 5462- 5473. https://dx.doi.org/10.1021/acscatal.9b00161

Wang ZW, Deng JG, Liu YX, Yang HG, Xie SH, Wu ZX, et al. Three-dimensionally ordered macroporous CoCr2O4- supported Au–Pdalloy nanoparticles: Highly active catalysts for methane combustion. Catal Today 2017, 281: 467-476. http://dx.doi.org/10.1016/j.cattod.2016.05.035

Li XY, Liu YX, Deng JG, Zhang Y, Xie SH, Zhao XT, et al. 3DOM LaMnAl11O19-supported AuPd alloy nanoparticles: Highly active catalysts for methane combustion in a continuous-flow microreactor. Catal Today 2018: 308: 71-80. http://dx.doi.org/10.1016/j.cattod.2017.07.024

Xu P, Zhang X, Zhao XT, Yang J, Hou ZQ, Bai L, et al. Preparation, characterization, and catalytic performance of PdPt/3DOM LaMnAl11O19 for the combustion of methane. Appl Catal A: Gen 2018; 562: 284-293. https://dx.doi.org/10.1016/j.apcata.2018.05.022

Wang H, Yang W, Tian PH, Zhou J, Tang R and Wu SJ. A highly active and anti-coking Pd−Pt/SiO2catalyst for catalytic combustion of toluene at low temperature. Appl Catal A: Gen 2017; 529: 60-67. http://dx.doi.org/10.1016/j.apcata.2016.10.016

Wu ZX, Deng JG, Xie SH, Zhao XT, Zhang KF, et al. Mesoporous Cr2O3-supported Au-Pd nanoparticles: highperformance catalysts for the oxidation of toluene. Microporous Mesoporous Mater 2016; 224: 311-322. http://dx.doi.org/10.1016/j.micromeso.2015.11.061

Wang ZW, Liu YX, Yang T, Deng JG, Xie SH and Dai HX. Catalytic performance of cobalt oxide‐supported gold−palladium nanocatalysts for the removal of toluene and o‐xylene. Chinese J Catal 2017; 38: 207-216. https://dx.doi.org/10.1016/S1872-2067(16)62569-X

Tan W, Deng JG, Xie SH, Yang HG, Jiang Y, Guo GS, et al. Ce0.6Zr0.3Y0.1O2 nanorod supported gold and palladium alloy nanoparticles: high-performance catalysts for toluene oxidation. Nanoscale, 2015; 7: 8510-8523. https://dx.doi.org/10.1039/c5nr00614g

Xie SH, Deng JG, Liu YX,, Zhao XT, Yang J, Zhang KF, et al. Effect of transition metal doping on the catalytic performance of Au–Pd/3DOM Mn2O3 for the oxidation of methane and oxylene. Appl Catal B Environ 2017; 206; 221-232. http://dx.doi.org/10.1016/j.apcatb.2017.01.030

Yang J, Liu YX, Deng JG, Zhao XT, Zhang KF, Han Z, et al. AgAuPd/meso-Co3O4: High-performance catalysts for methanol oxidation. Chinese J Catal 2019; 40: 837-848. https://dx.doi.org/10.1016/S1872-2067(18)63205-X

Saint-Lager MC, Languille MA, Cadete Santos Aires FJ, Bailly A, Garaudée S, Ehret E, et al. Carbon monoxide oxidation promoted by a highly active strained PdO layer at the surface of Au30Pd70(110). ACS Catal 2019; 9; 4448-4461. https://dx.doi.org/10.1021/acscatal.8b04190

Wang Y, Arandiyan H, Scott J, Akia M, Dai HX, Deng JG, et al. High performance Au−Pd supported on 3D hybrid strontium-substituted lanthanum manganite perovskite catalyst for methane combustion. ACS Catal 2016; 6: 6935- 6947. https://dx.doi.org/10.1021/acscatal.6b01685

Wang Y, Dai CY, Chen BB, Wang YD, Shi C and Guo XW. Nanoscale HZSM-5 supported PtAg bimetallic catalysts for simultaneous removal of formaldehyde and benzene. Catal Today 2015; 258: 616-626. http://dx.doi.org/10.1016/j.cattod.2015.03.042

Abbott HL, Aumer A, Lei Y, Asokan C, Meyer RJ, Sterrer M, et al. CO adsorption on monometallic and bimetallic Au–Pd nanoparticles supported on oxide thin films. J Phys Chem C 2010; 114: 17099-17104. https://dx.doi.org/10.1021/jp1038333

Jiang L, Yang N, Zhu JQ and Song CY. Preparation of monolithic Pt–Pd bimetallic catalyst and its performance in catalytic combustion of benzene series. Catal Today 2013; 216: 71-75. http://dx.doi.org/10.1016/j.cattod.2013.05.026

Amir HH, Natalia S and Robert EH. Kinetics of lowtemperature methane oxidation over SiO2 encapsulated bimetallic Pd−Pt nanoparticles. Ind Eng Chem Res 2018; 57: 8160-8171. http://dx.doi.org/10.1021/acs.iecr.8b01338

Xie SH, Deng JG, Liu YX, Zhang ZH, Yang HG, Jiang Y, et al. Excellent catalytic performance, thermal stability, and water resistance of 3DOM Mn2O3-supported Au–Pd alloy nanoparticles forthe complete oxidation of toluene. Appl Catal A: Gen 2015; 507: 82-90. http://dx.doi.org/10.1016/j.apcata.2015.09.026

Xie SH, Deng JG, Zang SM, Yang HG, Guo GS, Arandiyan H, et al. Au–Pd/3DOM Co3O4: Highly active and stable nanocatalysts for toluene oxidation. J Catal 2015; 322: 38- 48. http://dx.doi.org/10.1016/j.jcat.2014.09.024

Zhang X, Liu YX, Deng JG, Yu XH, Han Z, Zhang KF, et al. Alloying of gold with palladium: An effective strategy to improve catalytic stability and chlorine-tolerance of the 3DOM CeO2-supported catalysts in trichloroethylene combustion. Appl Catal B: Environ 2019; 257: 117879. https://dx.doi.org/10.1016/j.apcatb.2019.117879

Bonelli R, Albonetti S, Morandi V, Ortolani L, Riccobene PM, Scirè S, et al. Design of nano-sized FeOx and Au/FeOx catalysts supported on CeO2 for total oxidation of VOC. Appl Catal A: Gen 2011; 395: 10-18. http://dx.doi.org/10.1016/j.apcata.2011.01.017

Qian K, Fang J, Huang WX, He B, Jiang ZQ, Ma YS, et al. Understanding the deposition–precipitation process for the preparation of supported Au catalysts. J Mol Catal A: Chem 2010; 320: 97-105. http://dx.doi.org/10.1016/j.molcata.2010.01.010

Solsona B, Pérez-Cabero M, Vázquez I, Dejoz A, García T, Álvarez-Rodríguez J, et al. Total oxidation of VOCs on Au nanoparticles anchored on Co doped mesoporous UVM-7 silica. Chem Eng J 2012; 187: 391-400. http://dx.doi.org/10.1016/j.cej.2012.01.132

Grisel RJH and Nieuwenhuys BE. A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts. Catal Today 2001; 64: 69-81. http://dx.doi.org/10.1016/s0920-5861(00)00510-1

Yang HG, Deng JG, Xie SH, Jiang Y, Dai HX and Au CT. Au/MnOx/3DOM SiO2: Highly active catalysts for toluene oxidation. Appl Catal A: Gen 2015; 507: 139-148. http://dx.doi.org/10.1016/j.apcata.2015.09.043

Jiang Y, Xie SH, Yang HG, Deng JG, Liu YX and Dai HX. Mn3O4−Au/3DOM La0.6Sr0.4CoO3: High-performance catalysts for toluene oxidation. Catal Today 2017; 281: 437-446. http://dx.doi.org/10.1016/j.cattod.2016.05.012

Monai M, Montini T, Chen C, Fonda E, Gorte RJ and Fornasiero P. Methane catalytic combustion over hierarchical Pd@CeO2/Si−Al2O3: Effect of the presence of water. ChemCatChem 2015; 14: 2038-2046. http://dx.doi.org/10.1002/cctc.201402717

Chen C, Yeh YH, Cargnello M, Murray CB, Fornasiero P and Gorte RJ. Methane oxidation on Pd@ZrO2/Si−Al2O3 is enhanced by surface reduction of ZrO2. ACS Catal 2014; 4: 3902-3909. http://dx.doi.org/10.1021/cs501146u

Satsuma A, Tojo T, Okuda K, Yamamoto Y, Arai S and Oyama J. Effect of preparation method of Co-promoted Pd/alumina for methane combustion. Catal Today 2015; 242: 308-314. http://dx.doi.org/10.1016/j.cattod.2014.05.046

Zuo SF and Qi CZ. Modification of Co/Al2O3 with Pd and Ce and their effects on benzene oxidation. Catal Commun 2011; 15: 74-77. http://dx.doi.org/10.1016/j.catcom.2011.08.021

Xie SH, Liu YX, Deng JG, Zhao XT, Yang J, Zhang KF, et al. Three-dimensionally ordered macroporous CeO2-supported Pd@Co nanoparticles: Highly active catalysts for methane oxidation. J Catal 2016; 342: 17-26. http://dx.doi.org/10.1016/j.jcat.2016.07.003

Hou ZQ, Liu YX, Deng JG, Lu Y, Xie SH, Fang XZ, et al. Highly active and stable Pd−GaOx/Al2O3 catalysts derived from intermetallic Pd5Ga3 nanocrystals for methane combustion. ChemCatChem 2018; 24: 5637-5648. http://dx.doi.org/10.1002/cctc.201801684

Widjaja H, Sekizawa K, Eguchi K and Arai H. Oxidation of methane over Pd/mixed oxides for catalytic combustion. Catal Today 1999; 47: 95-101. http://dx.doi.org/10.1016/s0920-5861(98)00286-7

Zou XL, Rui Z.B, Song SQ and Ji HB. Enhanced methane combustion performance over NiAl2O4-interface promoted Pd/γ-Al2O3. J Catal 2016; 338: 192-201. http://dx.doi.org/10.1016/j.jcat.2015.12.031

Ferreira RSG, de Oliveira PGP and Noronha FB. Characterization and catalytic activity of Pd/V2O5/Al2O3 catalysts on benzene total oxidation. Appl Catal B: Environ 2004; 50: 243-249. http://dx.doi.org/10.1016/j.apcatb.2004.01.006

Xie SH, Liu YX, Deng JG, Zang SM, Zhang ZH, Arandiyan H, et al. Efficient removal of methane over cobalt-monoxidedoped AuPd nanocatalysts. Environ Sci Technol 2017; 51: 2271-2279. http://dx.doi.org/10.1021/acs.est.6b03983

Sedjame HJ, Fontaine C, Lafaye G, and Barbier J. On the promoting effect of the addition of ceria to platinum based alumina catalysts for VOCs oxidation. Appl Catal B: Environ 2014; 144: 233-242. http://dx.doi.org/10.1016/j.apcatb.2013.07.022

Nobuhito I, Jeong M, Nunotani N and Moriyama N. Introduction of NiO in Pt/CeO2−ZrO2/γ-Al2O3 catalysts for removing toluene in indoor air. Mate Lett 2017; 208: 43-45. http://dx.doi.org/10.1016/j.matlet.2017.05.048

Jiang ZY, Feng XB, Deng JL, He C, Douthwaite M, Yu Y, et al. Atomic-scale insights into the low-temperature oxidation of methanol over a single-atom Pt1−Co3O4 catalyst. Adv Funct Mater 2019; 29: 1902041. http://dx.doi.org/10.1002/adfm.201902041

Rintramee K, Föttinger K, Rupprechter G and Wittayakuna J. Ethanol adsorption and oxidation on bimetallic catalysts containing platinum and base metal oxide supported on MCM-4. Appl Catal B: Environ 2012; 115-116: 225-235. http://dx.doi.org/10.1016/j.apcatb.2011.11.050

Yang HG, Deng JG, Liu YX, Xie SH, Xu P and Dai HX. Pt/Co3O4/3DOM Al2O3: Highly effective catalysts for toluene combustion. Chinese J Catal 2016; 37: 934-946. http://dx.doi.org/10.1016/S1872-2067(15)61095-6

He C, Jiang ZY, Ma MD, Zhang XD, Douthwaite M, Shi JW, et al. Understanding the promotional effect of Mn2O3 on micro-/mesoporous hybrid silica nanocubic-supported Pt catalysts for the low-temperature destruction of methyl ethyl ketone: an experimental and theoretical study. ACS Catal 2018; 8: 4213-4229. http://dx.doi.org/10.1021/acscatal.7b04461

Hou ZY, Zhou XY, Lin T, Chen YQ, Lai XX, Feng J, et al. The promotion effect of tungsten on monolith Pt/Ce0.65Zr0.35O2 catalysts for the catalytic oxidation of toluene. New J Chem 2019; 43: 5719-5726. http://dx.doi.org/10.1039/c8nj06245e

Huang QQ, Xue XM and Zhou RX. Catalytic behavior and durability of CeO2 or/and CuO modified USY zeolite catalysts for decomposition of chlorinated volatile organic compounds. J Mol Catal A: Chem 2011; 344: 74-82. http://dx.doi.org/10.1016/j.molcata.2011.04.021

Huang QQ, Meng ZH and Zhou RX. The effect of synergy between Cr2O3−CeO2 and USY zeolite on the catalytic performance and durability of chromium and cerium modified USY catalysts for decomposition of chlorinated volatile organic compounds. Appl Catal B: Environ 2012; 115-116: 179-189. http://dx.doi.org/10.1016/j.apcatb.2011.12.028

Abdullah AZ, Bakar MZA and Bhatia S. Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified H-ZSM-5 catalyst. J Hazard Mater 2006; 129: 39-49. http://dx.doi.org/10.1016/j.jhazmat.2005.05.051

Yang P, Shi ZN, Tao F, Yang SS and Zhou RX. Synergistic performance between oxidizability and acidity/texture properties for 1,2-dichloroethane oxidation over (Ce,Cr)xO2/zeolite catalysts. Chem Eng Sci 2015; 134: 340- 347. http://dx.doi.org/10.1016/j.ces.2015.05.024

Huang QQ, Zuo SF and Zhou RX. Catalytic performance of pillared interlayered clays (PILCs) supported CrCe catalysts for deep oxidation of nitrogen-containing VOCs. Appl Catal B: Environ 2010; 95: 327-334. http://dx.doi.org/10.1016/j.apcatb.2010.01.011

Feng BB, Wei YX, Qiu YN, Zuo SF and Ye N. Ce-modified AlZr pillared clays supported-transition metals for catalytic combustion of chlorobenzene. J Rare Earth 2018; 36: 1169- 1174. http://dx.doi.org/10.1016/j.jre.2018.03.026

Zuo SF, Ding ML, Tong J, Feng LC and Qi CZ. Study on the preparation and characterization of a titanium-pillared claysupported CrCe catalyst and its application to the degradation of a low concentration of chlorobenzene. Appl Clay Sci 2015; 105-106: 118-123. http://dx.doi.org/10.1016/j.clay.2014.12.033

Kan JW, Deng L, Li B, Huang Q, Zhu SM, Shen SB and Chen YW. Performance of co-doped Mn-Ce catalysts supported on cordierite for low concentration chlorobenzene oxidation. Appl Catal A: Gen 2017; 530: 21-29. http://dx.doi.org/10.1016/j.apcata.2016.11.013

Yang P, Xue XM, Meng ZH and Zhou RX. Enhanced catalytic activity and stability of Ce doping on Cr supported HZSM-5 catalysts for deep oxidation of chlorinated volatile organic compounds. Chem Eng J 2013; 234: 203-210. http://dx.doi.org/10.1016/j.cej.2013.08.107

Sun PF, Wang WL, Dai XX, Weng XL and Wu ZB. Mechanism study on catalytic oxidation of chlorobenzene over MnxCe1−xO2/H-ZSM5 catalysts under dry and humid conditions. Appl Catal B: Environ 2016; 198: 389-397. http://dx.doi.org/10.1016/j.apcatb.2016.05.076

Chen HH, Zhang HP and Yan Y. Fabrication of porous copper/manganese binary oxides modified ZSM-5 membrane catalyst and potential application in the removal of VOCs. Chem Eng J 2014; 254: 133-142. http://dx.doi.org/10.1016/j.cej.2014.05.083

Huang Q, Zhang ZY, Ma WJ, Chen YW, Zhu SM and Shen SB. A novel catalyst of Ni–Mn complex oxides supported on cordierite for catalytic oxidation of toluene at low temperature. J Ind Eng Chem 2012; 18: 757-762. http://dx.doi.org/10.1016/j.jiec.2011.11.129

Liu LS, Song Y, Fu ZD, Ye Q, Cheng SY, Kang TF and Dai HX. Enhanced catalytic performance of Cu- and/or Mnloaded Fe-Sep catalysts for the oxidation of CO and ethyl acetate. Chinese J Chem Eng 2017; 25: 1427-1434. http://dx.doi.org/10.1016/j.cjche.2017.01.005

Lin LY and Bai HL. Promotional effects of manganese on the structure and activity of Ce–Al–Si based catalysts for lowtemperature oxidation of acetone. Chem Eng J 2016; 291: 94-105. http://dx.doi.org/10.1016/j.cej.2016.01.098

Wu M, Wang XY, Dai QG, Gu YX and Li D. Low temperature catalytic combustion of chlorobenzene over Mn–Ce–O/- Al2O3 mixed oxides catalyst. Catal Today 2010; 158: 336- 342. http://dx.doi.org/10.1016/j.cattod.2010.04.006

Wu M, Wang XY, Dai QG and Li D. Catalytic combustion of chlorobenzene over Mn–Ce/Al2O3 catalyst promoted by Mg. Catal Commun 2010; 11: 1022-1025. http://dx.doi.org/10.1016/j.catcom.2010.04.011

Li X, Wang LJ, Xia QB, Liu ZM and Li Z. Catalytic oxidation of toluene over copper and manganese-based catalysts: Effect of water vapor. Catal Commun 2011; 14: 15-19. http://dx.doi.org/10.1016/j.catcom.2011.07.003

Vu VH, Belkouch J, Ould-Dris A and Taouk B. Removal of hazardous chlorinated VOCs over Mn–Cu mixed oxide-based catalyst. J Hazard Mater 2009; 169: 758-765. http://dx.doi.org/10.1016/j.jhazmat.2009.04.010

Gu YL, Yang YX, Qiu YM, Sun KP and Xu XL. Combustion of dichloromethane using copper–manganese oxides supported on zirconium modified titanium-aluminum catalysts. Catal Commun 2010; 12: 277-281. http://dx.doi.org/10.1016/j.catcom.2010.10.006

Yang P, Zuo SF, Shi ZN, Tao F and Zhou RX. Elimination of 1,2-dichloroethane over (Ce,Cr)xO2/MOy catalysts (M = Ti, V, Nb, Mo, W and La). Appl Catal B: Environ 2016; 191: 53-61. http://dx.doi.org/10.1016/j.apcatb.2016.03.017

All the published articles are licensed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.